【題目】如圖,在矩形中,點(diǎn)為對(duì)角線的中點(diǎn),點(diǎn)上一點(diǎn),連接并延長(zhǎng)交于點(diǎn),連接、

1)求證:

2)當(dāng)時(shí),試判斷四邊形的形狀,并說(shuō)明理由.

【答案】1)證明見(jiàn)解析;(2)四邊形是菱形,理由見(jiàn)解析.

【解析】

1)先根據(jù)矩形的性質(zhì)得出,再根據(jù)平行線的性質(zhì)可得,然后根據(jù)線段中點(diǎn)的定義可得,最后根據(jù)三角形全等的判定定理即可得證;

2)先根據(jù)三角形全等的性質(zhì)得出,再根據(jù)平行四邊形的判定可得四邊形是平行四邊形,然后根據(jù)平行線的性質(zhì)、角的和差可得,又根據(jù)等腰三角形的三線合一可得,從而根據(jù)菱形的判定可得平行四邊形是菱形,最后說(shuō)明菱形不是正方形即可.

1四邊形ABCD是矩形

點(diǎn)O是對(duì)角線的中點(diǎn)

中,

;

2)四邊形是菱形,理由如下:

由(1)已證:

,即

四邊形是平行四邊形

,即OA的角平分線

(等腰三角形的三線合一)

平行四邊形是菱形

點(diǎn)上一點(diǎn),

,即

菱形不是正方形

綜上,四邊形是菱形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線y = x2 – 2 m x – 2m – 2與直線y =-x-2 交于C,D兩點(diǎn),將拋物線在C、D兩點(diǎn)之間的部分(不含C、D)上恰有兩個(gè)點(diǎn)的橫坐標(biāo)為整數(shù),則m的取值范圍為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱形ABCD的邊長(zhǎng)為2,∠ABC60°,點(diǎn)E、F在對(duì)角線BD上運(yùn)動(dòng),且EF2,連接AEAF,則AEF周長(zhǎng)的最小值是(

A.4B.4+C.2+2D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線yax2+bx+2x軸交于A(﹣10),B40)兩點(diǎn),與y軸交于點(diǎn)C

1)求a,b的值

2)若點(diǎn)D是拋物線上的一點(diǎn),且位于直線BC上方,連接CDBD,AC.當(dāng)四邊形ABDC的面積有最大值時(shí),求點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】攀枝花得天獨(dú)厚,氣候宜人,農(nóng)產(chǎn)品資源極為豐富,其中晚熟芒果遠(yuǎn)銷(xiāo)北上廣等大城市.某水果店購(gòu)進(jìn)一批優(yōu)質(zhì)晚熟芒果,進(jìn)價(jià)為10/千克,售價(jià)不低于15/千克,且不超過(guò)40/每千克,根據(jù)銷(xiāo)售情況,發(fā)現(xiàn)該芒果在一天內(nèi)的銷(xiāo)售量(千克)與該天的售價(jià)(元/千克)之間的數(shù)量滿足如下表所示的一次函數(shù)關(guān)系.

銷(xiāo)售量(千克)

32.5

35

35.5

38

售價(jià)(元/千克)

27.5

25

24.5

22

1)某天這種芒果售價(jià)為28/千克.求當(dāng)天該芒果的銷(xiāo)售量

2)設(shè)某天銷(xiāo)售這種芒果獲利元,寫(xiě)出與售價(jià)之間的函數(shù)關(guān)系式.如果水果店該天獲利400元,那么這天芒果的售價(jià)為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我校為了了解圖書(shū)漂流的開(kāi)展情況,隨機(jī)抽取部分學(xué)生進(jìn)行了問(wèn)卷調(diào)查,選項(xiàng):閱讀漂流圖書(shū)本及以上;選項(xiàng):閱讀漂流圖書(shū)本;選項(xiàng):閱讀漂流圖書(shū)本;選項(xiàng):沒(méi)有閱讀漂流圖書(shū),只能從中選擇一個(gè)選項(xiàng)進(jìn)行回答.收集整理問(wèn)卷調(diào)查的情況,把結(jié)果繪制成如下不完整的統(tǒng)計(jì)圖:

1)此次抽樣調(diào)查了_______名學(xué)生;

2)補(bǔ)全條形統(tǒng)計(jì)圖;

3)扇形統(tǒng)計(jì)圖選項(xiàng)圓心角的度數(shù)是_______;

4)該校有名學(xué)生,估計(jì)全校閱讀過(guò)漂流圖書(shū)的學(xué)生約有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,港口B位于港口O正西方向120 km處,小島C位于港口O北偏西60°的方向.一艘游船從港口O出發(fā),沿OA方向(北偏西30°)以v km/h的速度駛離港口O,同時(shí)一艘快艇從港口B出發(fā),沿北偏東30°的方向以60 km/h的速度駛向小島C,在小島C用1 h加裝補(bǔ)給物資后,立即按原來(lái)的速度給游船送去.

(1)快艇從港口B到小島C需要多長(zhǎng)時(shí)間?

(2)若快艇從小島C到與游船相遇恰好用時(shí)1h,求v的值及相遇處與港口O的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2016年3月國(guó)際風(fēng)箏節(jié)期間,王大伯決定銷(xiāo)售一批風(fēng)箏,經(jīng)市場(chǎng)調(diào)研:蝙蝠型風(fēng)箏進(jìn)價(jià)每個(gè)為10元,當(dāng)售價(jià)每個(gè)為12元時(shí),銷(xiāo)售量為180個(gè),若售價(jià)每提高1元,銷(xiāo)售量就會(huì)減少10個(gè),請(qǐng)回答以下問(wèn)題:

(1)用表達(dá)式表示蝙蝠型風(fēng)箏銷(xiāo)售量y(個(gè))與售價(jià)x(元)之間的函數(shù)關(guān)系(12≤x≤30);

(2)王大伯為了讓利給顧客,并同時(shí)獲得840元利潤(rùn),售價(jià)應(yīng)定為多少?

(3)當(dāng)售價(jià)定為多少時(shí),王大伯獲得利潤(rùn)W最大,最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù))的圖象如圖所示,對(duì)稱(chēng)軸為直線,有下列結(jié)論:①;②;③.其中,正確結(jié)論的個(gè)數(shù)是(

A.3個(gè)B.2個(gè)C.1個(gè)D.0個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案