【題目】海上有一小島,為了測量小島兩端A、B的距離,測量人員設(shè)計了一種測量方法,如圖所示,已知B點是CD的中點,E是BA延長線上的一點,測得AE=8.3海里,DE=30海里,且DE⊥EC,cos∠D=
(1)求小島兩端A、B的距離;
(2)過點C作CF⊥AB交AB的延長線于點F,求sin∠BCF的值.

【答案】
(1)解:在Rt△CED中,∠CED=90°,DE=30海里,

∴cosD=

∴CE=40(海里),CD=50(海里).

∵B點是CD的中點,

∴BE= CD=25(海里)

∴AB=BE﹣AE=25﹣8.3=16.7(海里).

答:小島兩端A、B的距離為16.7海里.


(2)解:設(shè)BF=x海里.

在Rt△CFB中,∠CFB=90°,

∴CF2=CB2﹣BF2=252﹣x2=625﹣x2

在Rt△CFE中,∠CFE=90°,

∴CF2+EF2=CE2,即625﹣x2+(25+x)2=1600.

解得x=7.

∴sin∠BCF=


【解析】(1)在Rt△CED中,利用三角函數(shù)求出CE,CD的長,根據(jù)中點的定義求得BE的長,AB=BE﹣AE即可求解;(2)設(shè)BF=x海里.在Rt△CFB中,利用勾股定理求得CF2=CB2﹣BF2=252﹣x2=625﹣x2 . 在Rt△CFE中,列出關(guān)于x的方程,求得x的值,從而求得sin∠BCF的值.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知:ABC是等腰直角三角形.A=90°,CE平分∠ACBAB于點E.

(1)如圖1,若點D在斜邊BC上,DM垂直平分BE,垂足為M.求證:BD=AE.

(2)如圖2,過點BBFCECE的延長線于點F.CE=6,求BEC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點O為直線AB上一點,過點O作射線OC,使∠BOC=135°,將一個含45°角的直角三角尺的一個頂點放在點O處,斜邊OM與直線AB重合,另外兩條直角邊都在直線AB的下方.

1)將圖1中的三角尺繞著點O逆時針旋轉(zhuǎn)90°,如圖2所示,此時∠BOM=_____;在圖2中,OM是否平分∠CON?請說明理由;

2)緊接著將圖2中的三角板繞點O逆時針繼續(xù)旋轉(zhuǎn)到圖3的位置所示,使得ON在∠AOC的內(nèi)部,請?zhí)骄浚骸?/span>AOM與∠CON之間的數(shù)量關(guān)系,并說明理由;

3)將圖1中的三角板繞點O按每秒的速度沿逆時針方向旋轉(zhuǎn)一周,在旋轉(zhuǎn)的過程中,第t秒時,直線ON恰好平分銳角∠AOC,則t的值為_____(直接寫出結(jié)果).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,菱形ABCD中,AB=10cm,BD=12cm,對角線AC與BD相交于點O,直線MN以1cm/s從點D出發(fā),沿DB方向勻速運動,運動過程中始終保持MN⊥BD,垂足是點P,過點P作PQ⊥BC,交BC于點Q.(0<t<6)
(1)求線段PQ的長;(用含t的代數(shù)式表示)
(2)設(shè)△MQP的面積為y(單位:cm2),求y與t的函數(shù)關(guān)系式;
(3)是否存在某時刻t,使線段MQ恰好經(jīng)過點O?若存在求出此時t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(探究)如圖①,∠AFH和∠CHF的平分線交于點O,EG經(jīng)過點O且平行于FH,分別與AB、CD交于點E、G

(1)若∠AFH60°,∠CHF50°,則∠EOF_____度,∠FOH_____度.

(2)若∠AFH+CHF100°,求∠FOH的度數(shù).

(拓展)如圖②,∠AFH和∠CHI的平分線交于點OEG經(jīng)過點O且平行于FH,分別與AB、CD交于點E、G.若∠AFH+CHFα,直接寫出∠FOH的度數(shù).(用含a的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解方程
(1)解方程組:
(2)已知關(guān)于x的一元二次方程x2+2x﹣m=1有實數(shù)根,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=a(x﹣h)2+k經(jīng)過點A(0,1),且頂點坐標為B(1,2),它的對稱軸與x軸交于點C.

(1)求此拋物線的解析式.
(2)在第一象限內(nèi)的拋物線上求點P,使得△ACP是以AC為底的等腰三角形,請求出此時點P的坐標.
(3)上述點是否是第一象限內(nèi)此拋物線上與AC距離最遠的點?若是,請說明理由;若不是,請求出第一象限內(nèi)此拋物線上與AC距離最遠的點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,AD∥BC,要是四邊形ABCD成為平行四邊形,則應(yīng)增加的條件是(
A.AB=CD
B.∠BAD=∠DCB
C.AC=BD
D.∠ABC+∠BAD=180°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,A(0,2),B(1,0),點C為線段AB的中點,將線段BA繞點B按順時針方向旋轉(zhuǎn)90°得到線段BD,拋物線y=ax2+bx+c(a≠0)經(jīng)過點D.

(1)若該拋物線經(jīng)過原點O,且a=﹣ ,求該拋物線的解析式;
(2)在(1)的條件下,點P(m,n)在拋物線上,且∠POB銳角,滿足∠POB+∠BCD<90°,求m的取值范圍.

查看答案和解析>>

同步練習冊答案