【題目】如圖,一副三角尺△ABC與△ADE的兩條斜邊在一條直線上,直尺的一邊GF∥AC,則∠DFG的度數(shù)為_____________.
【答案】105°
【解析】
解法一:利用平行線的性質(zhì)定理∠CFG=180°-∠C =90°,利用等角的余角相等得出∠CFD=∠CAD=15°,它們之和即為∠DFG;
解法二:利用平行線的性質(zhì)定理可求出∠FGE=∠CAB=60°,再利用三角形的外角和可求出∠FGE=∠FGE+∠DEA=105°.
解法一:∵GF∥AC,∠C=90°,
∴∠CFG=180°-90°=90°,
又∵AD,CF交于一點(diǎn),∠C=∠D,
∴∠CAD=∠CFD=60°-45°=15°,
∴∠DFG=∠CFD+∠CFG=15°+90°=105°.
解法二:∵GF∥AC,∠CAB=60°,
∴∠FGE=60°,
又∵∠DFG是△EFG的外角,∠FEG=45°,
∴∠DFG=∠FGE+∠FEG=60°+45°=105°,
故答案為:105°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店第一次用600元購進(jìn)2B鉛筆若干支,第二次又用600元購進(jìn)該款鉛筆,但這次每支的進(jìn)價(jià)是第一次進(jìn)價(jià)的倍,購進(jìn)數(shù)量比第一次少了30支.
(1)求第一次每支鉛筆的進(jìn)價(jià)是多少元?
(2)若要求這兩次購進(jìn)的鉛筆按同一價(jià)格全部銷售完畢后獲利不低于420元,問每支售價(jià)至少是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在梯形ABCD中,AD∥BC,∠B=90°,AD=16cm,AB=12cm,BC=21cm,動(dòng)點(diǎn)P從點(diǎn)B出發(fā),沿射線BC的方向以每秒2cm的速度運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)A出發(fā),在線段AD上以每秒1cm的速度向點(diǎn)D運(yùn)動(dòng),點(diǎn)P,Q分別從點(diǎn)B,A同時(shí)出發(fā),當(dāng)點(diǎn)Q運(yùn)動(dòng)到點(diǎn)D時(shí),點(diǎn)P隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t(秒).
(1)當(dāng)t為何值時(shí),四邊形PQDC是平行四邊形
(2)當(dāng)t為何值時(shí),以C,D,Q,P為頂點(diǎn)的梯形面積等于60cm2?
(3)是否存在點(diǎn)P,使△PQD是等腰三角形?若存在,請(qǐng)求出所有滿足要求的t的值,若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD為平行四邊形,延長AD到E,使DE=AD,連接EB,EC,DB.添加一個(gè)條件,不能使四邊形DBCE成為矩形的是( )
(A)AB=BE (B)BE⊥DC (C)∠ADB=90° (D)CE⊥DE
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一架梯子的長度為25米,斜靠在墻上,梯子低部離墻底端為7米.
(1)這個(gè)梯子頂端離地面有 米;
(2)如果梯子的頂端下滑了4米,那么梯子的底部在水平方向滑動(dòng)了幾米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在4×4的方格紙中,△ABC的三個(gè)頂點(diǎn)都在格點(diǎn)上.
(1)在圖1中,畫出一個(gè)與△ABC成中心對(duì)稱的格點(diǎn)三角形;
(2)在圖2中,畫出一個(gè)與△ABC成軸對(duì)稱且與△ABC有公共邊的格點(diǎn)三角形;
(3)在圖3中,畫出△ABC繞著點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)90°后的三角形;
(4)在圖4中,畫出所有格點(diǎn)△BCD,使△BCD為等腰直角三角形,且S△BCD=4.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)D、E分別是等邊三角形ABC的邊BC、AC上的點(diǎn),連接AD、BE交于點(diǎn)O,且△ABD≌△BCE.
(1)若AB=3,AE=2,則BD= ;
(2)若∠CBE=15°,則∠AOE= ;
(3)若∠BAD=a,猜想∠AOE的度數(shù),并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(8分)某酒廠每天生產(chǎn)A,B兩種品牌的白酒共600瓶,A,B兩種品牌的白酒每瓶的成本和利潤如下表:設(shè)每天生產(chǎn)A種品牌白酒x瓶,每天獲利y元.
(1)請(qǐng)寫出y關(guān)于x的函數(shù)關(guān)系式;
(2)如果該酒廠每天至少投入成本26400元,那么每天至少獲利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有大小兩種盛酒的桶,已知5個(gè)大桶加上1個(gè)小桶可以盛酒3斛(斛是古代的一種容量位),1個(gè)大桶加上5個(gè)小桶可以盛酒2斛。
(1)1個(gè)大桶、1個(gè)小桶分別可以盛酒多少斛?
(2)盛酒16斛,需要大桶、小桶各多少?(寫出兩種方案即可)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com