【題目】感知:如圖①,在正方形ABCD中,點(diǎn)E在對(duì)角線(xiàn)AC上(不與點(diǎn)A、C重合),連結(jié)ED,EB,過(guò)點(diǎn)E作EF⊥ED,交邊BC于點(diǎn)F.易知∠EFC+∠EDC=180°,進(jìn)而證出EB=EF.
探究:如圖②,點(diǎn)E在射線(xiàn)CA上(不與點(diǎn)A、C重合),連結(jié)ED、EB,過(guò)點(diǎn)E作EF⊥ED,交CB的延長(zhǎng)線(xiàn)于點(diǎn)F.求證:EB=EF
應(yīng)用:如圖②,若DE=2,CD=1,則四邊形EFCD的面積為
【答案】探究:證明見(jiàn)詳解;應(yīng)用:
【解析】
探究:根據(jù)正方形的性質(zhì)得到AB=BC=CD=DA,∠ABC=∠ADC=∠BCD=90°.求得∠ACB=∠ACD=45°,根據(jù)全等三角形的性質(zhì)得到ED=EB,∠EDC=∠EBC,求得∠EFB=∠EDC,根據(jù)等腰三角形的判定定理即可得到結(jié)論;
應(yīng)用:連接DF,求得△DEF是等腰直角三角形,根據(jù)勾股定理得到CF=,由三角形的面積公式即可得到結(jié)論.
解:探究:∵四邊形ABCD是正方形,
∴AB=BC=CD=DA,∠ABC=∠ADC=∠BCD=90°.
∴∠ACB=∠ACD=45°,
又∵EC=EC,
∴△EDC≌△EBC(SAS),
∴ED=EB,∠EDC=∠EBC,
∵EF⊥ED,
∴∠DEF=90°,
∴∠EFC+∠EDC=180°
又∵∠EBC+∠EBF=180°,
∴∠EFB=∠EDC,
∴∠EBF=∠EFB,
∴EB=EF;
應(yīng)用:連接DF,
∵EF=DE,∠DEF=90°,
∴△DEF是等腰直角三角形,
∵DE=2,
∴EF=2,DF= ,
∵∠DCB=90°,CD=1,
∴CF=,
∴四邊形EFCD的面積=S△DEF+S△CDF= .
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,圓心都在x軸正半軸上的半圓O1,半圓O2,…,半圓On與直線(xiàn)相切,設(shè)半圓O1,半圓O2,…,半圓On的半徑分別是r1,r2,…,rn,則當(dāng)r1=1時(shí),r2015= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在△ABC中,AD⊥BC,垂足是D,E是線(xiàn)段AD上的點(diǎn),且AD=BD,DE=DC.
⑴ 求證:∠BED=∠C;
⑵ 若AC=13,DC=5,求AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知四邊形ABCD是邊長(zhǎng)為4的正方形,E為AB的中點(diǎn),將△ADE繞點(diǎn)D沿逆時(shí)針?lè)较蛐D(zhuǎn)后得到△DCF,連接EF,則EF的長(zhǎng)為( )
A. 2 B. 2 C. 2 D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC是邊長(zhǎng)為3的等邊三角形,點(diǎn)D是邊BC上的一點(diǎn),且BD=1,以AD為邊作等邊△ADE,過(guò)點(diǎn)E作EF∥BC,交AC于點(diǎn)F,連接BF,則下列結(jié)論中①△ABD≌△BCF;②四邊形BDEF是平行四邊形;③S四邊形BDEF=;④S△AEF=.其中正確的有( )
A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC的頂點(diǎn)A、B在x軸上,點(diǎn)C在y軸上正半軸上,且
A(-1,0),B(4,0),∠ACB=90°.
(1)求過(guò)A、B、C三點(diǎn)的拋物線(xiàn)解析式;
(2)設(shè)拋物線(xiàn)的對(duì)稱(chēng)軸l與BC邊交于點(diǎn)D,若P是對(duì)稱(chēng)軸l上的點(diǎn),且滿(mǎn)足以P、C、D為頂點(diǎn)的三角形與△AOC相似,求P點(diǎn)的坐標(biāo);
(3)在對(duì)稱(chēng)軸l和拋物線(xiàn)上是否分別存在點(diǎn)M、N,使得以A、O、M、N為頂點(diǎn)的四邊形是平行四邊形,若存在請(qǐng)直接寫(xiě)出點(diǎn)M、點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
圖1 備用圖
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲從A地出發(fā)步行到B地,乙同時(shí)從B地步行出發(fā)至A地,2小時(shí)后在中途相遇,相遇后,甲、乙步行速度都提高了1千米/小時(shí).若設(shè)甲剛出發(fā)時(shí)的速度為a千米/小時(shí),乙剛出發(fā)的速度為b千米/小時(shí).
(1)A、B兩地的距離可以表示為 千米(用含a,b的代數(shù)式表示);
(2)甲從A到B所用的時(shí)間是: 小時(shí)(用含a,b的代數(shù)式表示);
乙從B到A所用的時(shí)間是: 小時(shí)(用含a,b的代數(shù)式表示).
(3)若當(dāng)甲到達(dá)B地后立刻按原路向A返行,當(dāng)乙到達(dá)A地后也立刻按原路向B地返行.甲乙二人在第一次相遇后3小時(shí)36分鐘又再次相遇,請(qǐng)問(wèn)AB兩地的距離為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:△ABC在坐標(biāo)平面內(nèi),三個(gè)頂點(diǎn)的坐標(biāo)分別為A(0,3),B(3,4),C(2,2).(正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)是1個(gè)單位長(zhǎng)度)
(1)畫(huà)出△ABC向下平移4個(gè)單位,再向左平移1個(gè)單位得到的△A1B1C1,并直接寫(xiě)出C1點(diǎn)的坐標(biāo);
(2)作出△ABC繞點(diǎn)A順時(shí)針?lè)较蛐D(zhuǎn)90°后得到的△A2B2C2,并直接寫(xiě)出C2點(diǎn)的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com