精英家教網 > 初中數學 > 題目詳情
如圖,圓G過坐標原點,交y軸于點A,交x軸于點B,點C為圓上一點,且OC平分∠AOB交AB于點F.CE⊥y軸于E交AB于點H,連接EG
(1)求證:△CBF∽△COB;
(2)請?zhí)骄縊E、AE和EG這三條線段之間的數量關系,寫出你的結論并證明;
(3)若AH=6,HF=10,求OF的長度.

【答案】分析:(1)由OC平分∠AOB,可求得=,∠AOC=∠COB=45°,又由圓周角定理,可得∠CBF=∠COB=45°,則可證得:△CBF∽△COB;
(2)首先在CE上截取CQ=AE,連接GC、GQ,EG,可證得△EAG≌△QCG,則可得△EGQ是等腰直角三角形,繼而可得OE-AE=EG;
(3)易證得△FCH∽△FAC,然后設GH=x,可得GC=GA=6+x,GF=FH-GH=10-x,然后由在Rt△FGC中,CF2=GF2+GC2,可得方程,解此方程即可求得GH的長,繼而求得FB的長,則可求得答案.
解答:(1)證明:∵OC平分∠AOB,
=,∠AOC=∠COB=45°,
∴∠CBF=∠COB=45°,
∵∠OBC=∠BCF(公共角),
∴△CBF∽△COB;


(2)OE-AE=EG.
證明:在CE上截取CQ=AE,連接GC、GQ,EG.
=
∴CG⊥AB,
∴∠GCQ=90°-∠GHC,
∵CE⊥y軸,
∴∠GAE=90°-∠AHE,
∵∠AHE=∠GHC,
∴∠GAE=∠GCQ,
在△EAG和△QCG中,
,
∴△EAG≌△QCG(SAS),
∴EG=GQ,∠AGE=∠CGQ,
∴∠EGQ=∠AGE+∠AGQ=∠AGQ+∠CGQ=90°,
∴EG⊥GQ,
∴△EGQ是等腰直角三角形,
∴EQ=EG,
又∵△OEC是等腰直角三角形,
∴OE=CE,
∵AE=QC,
∴OE-AE=CE-CQ=EQ=EG;
∴OE-AE=EG;

(3)∵∠BAC=∠COB=45°,△OEC是等腰直角三角形,
∴∠CAF=∠FCH=45°,
∵∠AFC=∠CFH(公共角),
∴△FCH∽△FAC,
∴FC2=FH•FA,
∵AH=6,HF=10,
∴FA=AH+FH=16,
∴FC=4
設GH=x,GC=GA=6+x,
∴GF=FH-GH=10-x,
在Rt△FGC中,CF2=GF2+GC2,
∴(42=(10-x)2+(6+x)2,
解得:x=6,
∴FG=4,GA=12,FB=BG-GF=GA-GF=12-4=8,
∵OF•FC=FA•FB,
∴OF===
點評:此題考查了垂徑定理、圓周角定理、相似三角形的判定與性質、全等三角形的判定與性質、勾股定理以及相交弦定理.此題難度較大,注意掌握輔助線的作法,注意數形結合思想與方程思想的應用.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

如圖,已知拋物線的頂點坐標為M(1,4),且經過點N(2,3),與x軸交于A、B兩點(點A在點B左側),與y軸交于點C.
(1)求拋物線的解析式及點A、B、C的坐標;
(2)若直線y=kx+t經過C、M兩點,且與x軸交于點D,探索并判斷四邊形CDAN是怎樣的四邊形?并對你得到的結論予以證明;
(3)直線y=mx+2與拋物線交于T,Q兩點.是否存在這樣的實數m,使以線段TQ為直徑的圓恰好過坐標原點?若存在,請求出m的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,圓G過坐標原點,交y軸于點A,交x軸于點B,點C為圓上一點,且OC平分∠AOB交AB于點F.CE⊥y軸于E交AB于點H,連接EG
(1)求證:△CBF∽△COB;
(2)請?zhí)骄縊E、AE和EG這三條線段之間的數量關系,寫出你的結論并證明;
(3)若AH=6,HF=10,求OF的長度.

查看答案和解析>>

科目:初中數學 來源:四川省模擬題 題型:解答題

如圖,已知拋物線的頂點坐標為M(1,4),且經過點N(2,3),與x軸交于A、B兩點(點A在點B左側),與y軸交于點C。
(1)求拋物線的解析式及點A、B、C的坐標;
(2)若直線y=kx+t經過C、M兩點,且與x軸交于點D,探索并判斷四邊形CDAN是怎樣的四邊形?并對你得到的結論予以證明;
(3)直線y=mx+2與拋物線交于T,Q兩點,是否存在這樣的實數m,使以線段TQ為直徑的圓恰好過坐標原點,若存在,請求出m的值;若不存在,請說明理由。

查看答案和解析>>

科目:初中數學 來源:2012年福建省漳州市中考數學模擬試卷(二)(解析版) 題型:解答題

如圖,已知拋物線的頂點坐標為M(1,4),且經過點N(2,3),與x軸交于A、B兩點(點A在點B左側),與y軸交于點C.
(1)求拋物線的解析式及點A、B、C的坐標;
(2)若直線y=kx+t經過C、M兩點,且與x軸交于點D,探索并判斷四邊形CDAN是怎樣的四邊形?并對你得到的結論予以證明;
(3)直線y=mx+2與拋物線交于T,Q兩點.是否存在這樣的實數m,使以線段TQ為直徑的圓恰好過坐標原點?若存在,請求出m的值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案