【題目】如圖,用30m長(zhǎng)的籬笆沿墻建造一邊靠墻的矩形菜園,已知墻長(zhǎng)18m,設(shè)矩形的寬AB為xm.
(1)用含x的代數(shù)式表示矩形的長(zhǎng)BC;
(2)設(shè)矩形的面積為y,用含x的代數(shù)式表示矩形的面積y,并求出自變量的取值范圍;
(3)這個(gè)矩形菜園的長(zhǎng)和寬各為多少時(shí),菜園的面積y最大?最大面積是多少?
【答案】(1)(30﹣2x)m;(2)y=﹣2x2+30x(6≤x<15);(3)這個(gè)矩形的長(zhǎng)、寬各為15m、7.5m時(shí),菜園的面積最大,最大面積是112.5m2.
【解析】
(1)設(shè)菜園的寬AB為xm,則BC為(30-2x)m.
(2)由面積公式寫(xiě)出y與x的函數(shù)關(guān)系式,進(jìn)而求出x的取值范圍;
(3)第(2)中求得函數(shù)y=﹣2x2+30x,a<0,利用二次函數(shù)求最值的知識(shí)可得出菜園的最大面積.
解:(1)∵AB=CD=xm,
∴BC=(30﹣2x)m,
(2)由題意得y=x(30﹣2x)=﹣2x2+30x(6≤x<15);
(3)∵S=﹣2x2+30x=﹣2(x﹣7.5)2+112.5,
∴當(dāng)x=7.5時(shí),S有最大值,S最大=112.5,
此時(shí)這個(gè)矩形的長(zhǎng)為15m、寬為7.5m.
答:這個(gè)矩形的長(zhǎng)、寬各為15m、7.5m時(shí),菜園的面積最大,最大面積是112.5m2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在航線l的兩側(cè)分別有觀測(cè)點(diǎn)A和B,點(diǎn)B到航線l的距離BD為4km,點(diǎn)A位于點(diǎn)B北偏西60°方向且與B相距20km處.現(xiàn)有一艘輪船從位于點(diǎn)A南偏東74°方向的C處,沿該航線自東向西航行至觀測(cè)點(diǎn)A的正南方向E處.求這艘輪船的航行路程CE的長(zhǎng)度.(結(jié)果精確到0.1km)(參考數(shù)據(jù):≈1.73,sin74°≈0.96,cos74°≈0.28,tan74°≈3.49)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某游樂(lè)場(chǎng)一轉(zhuǎn)角滑梯如圖所示,滑梯立柱AB、CD均垂直于地面,點(diǎn)E在線段BD上,在C點(diǎn)測(cè)得點(diǎn)A的仰角為30°,點(diǎn)E的俯角也為30°,測(cè)得B、E間距離為10米,立柱AB高30米.求立柱CD的高(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)不透明的袋子里裝有編號(hào)分別為1、2、3的球(除編號(hào)以為,其余都相同),其中1號(hào)球1個(gè),3號(hào)球3個(gè),從中隨機(jī)摸出一個(gè)球是2號(hào)球的概率為.
(1)求袋子里2號(hào)球的個(gè)數(shù).
(2)甲、乙兩人分別從袋中摸出一個(gè)球(不放回),甲摸出球的編號(hào)記為x,乙摸出球的編號(hào)記為y,用列表法求點(diǎn)A(x,y)在直線y=x下方的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在二次函數(shù)y=ax2+bx+c的圖象中,你認(rèn)為其中正確的是( )
A. a>0 B. c>0
C. b2﹣4ac<0 D. 一元二次方程ax2+bx+c=0有兩個(gè)相等實(shí)根
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(感知)如圖①,在四邊形ABCD中,點(diǎn)P在邊AB上(點(diǎn)P不與點(diǎn)A、B重合),∠A=∠B=∠DPC=90°.易證:△DAP∽△PBC(不要求證明).
(探究)如圖②,在四邊形ABCD中,點(diǎn)P在邊AB上(點(diǎn)P不與點(diǎn)A、B重合),∠A=∠B=∠DPC.
(1)求證:△DAP~△PBC.
(2)若PD=5,PC=10,BC=9,求AP的長(zhǎng).
(應(yīng)用)如圖③,在△ABC中,AC=BC=4,AB=6,點(diǎn)P在邊AB上(點(diǎn)P不與點(diǎn)A、B重合),連結(jié)CP,作∠CPE=∠A,PE與邊BC交于點(diǎn)E.當(dāng)CE=3EB時(shí),求AP的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校八年級(jí)學(xué)生開(kāi)展踢毽子比賽活動(dòng),每班派5名學(xué)生參加,按團(tuán)體總數(shù)排列名次,在規(guī)定時(shí)間內(nèi)每人踢100個(gè)以上(含100個(gè))為優(yōu)秀,下表是成績(jī)最好的甲、乙兩班各5名學(xué)生的比賽數(shù)據(jù).(單位:個(gè))
1號(hào) | 2號(hào) | 3號(hào) | 4號(hào) | 5號(hào) | 總數(shù) | |
甲班 | 89 | 100 | 96 | 118 | 97 | 500 |
乙班 | 100 | 96 | 110 | 90 | 104 | 500 |
統(tǒng)計(jì)發(fā)現(xiàn)兩班總數(shù)相等,此時(shí)有人建議,可以通過(guò)考查數(shù)據(jù)中的其他信息來(lái)評(píng)判.試從兩班比賽數(shù)據(jù)的中位數(shù)、方差、優(yōu)秀率三個(gè)方面考慮,你認(rèn)為應(yīng)該選定哪一個(gè)班為冠軍?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】四位同學(xué)在研究函數(shù)y=x2+bx+c(b,c是常數(shù))時(shí),甲發(fā)現(xiàn)當(dāng)x=1時(shí),函數(shù)有最小值;乙發(fā)現(xiàn)﹣1是方程x2+bx+c=0的一個(gè)根;丙發(fā)現(xiàn)函數(shù)的最小值為3;丁發(fā)現(xiàn)當(dāng)x=2時(shí),y=4,已知這四位同學(xué)中只有一位發(fā)現(xiàn)的結(jié)論是錯(cuò)誤的,則該同學(xué)是( )
A. 甲 B. 乙 C. 丙 D. 丁
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=12,AD=4,BC=9,點(diǎn)P是AB上一動(dòng)點(diǎn).若△PAD與△PBC是相似三角形,則滿(mǎn)足條件的點(diǎn)P的個(gè)數(shù)有( 。
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com