【題目】某高中學(xué)校為使高一新生入校后及時(shí)穿上合身的校服,現(xiàn)提前對(duì)某校九年級(jí)(3)班學(xué)生即將所穿校服型號(hào)情況進(jìn)行了摸底調(diào)查,并根據(jù)調(diào)查結(jié)果繪制了如圖兩個(gè)不完整的統(tǒng)計(jì)圖(校服型號(hào)以身高作為標(biāo)準(zhǔn),共分為6種型號(hào)).
根據(jù)以上信息,解答下列問(wèn)題:
(1)該班共有 名學(xué)生?其中穿175型校服的學(xué)生有 人.
(2)在條形統(tǒng)計(jì)圖中,請(qǐng)把空缺的部分補(bǔ)充完整;
(3)在扇形統(tǒng)計(jì)圖中,請(qǐng)計(jì)算185型校服所對(duì)應(yīng)扇形圓心角度數(shù)為 ;
(4)該班學(xué)生所穿校服型號(hào)的眾數(shù)是 ,中位數(shù)是 .
【答案】(1)50;10;(2)補(bǔ)圖見(jiàn)解析;(3)14.4°;(4)眾數(shù)是165和170;中位數(shù)是170.
【解析】
(1)根據(jù)穿165型的人數(shù)與所占的百分比列式進(jìn)行計(jì)算即可求出學(xué)生總?cè)藬?shù),再乘以175型所占的百分比計(jì)算即可得解;
(2)求出185型的人數(shù),然后補(bǔ)全統(tǒng)計(jì)圖即可;
(3)用185型所占的百分比乘以360°計(jì)算即可得解;
(4)根據(jù)眾數(shù)的定義以及中位數(shù)的定義解答.
(1)15÷30%=50(名),50×20%=10(名),
即該班共有50名學(xué)生,其中穿175型校服的學(xué)生有10名;
(2)185型的學(xué)生人數(shù)為:50-3-15-15-10-5=50-48=2(名),
補(bǔ)全統(tǒng)計(jì)圖如圖所示;
(3)185型校服所對(duì)應(yīng)的扇形圓心角為:×360°=14.4°;
(4)165型和170型出現(xiàn)的次數(shù)最多,都是15次,
故眾數(shù)是165和170;
共有50個(gè)數(shù)據(jù),第25、26個(gè)數(shù)據(jù)都是170,
故中位數(shù)是170.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,P是對(duì)角線AC上一點(diǎn)(不與點(diǎn)A、C重合),連接PD,過(guò)點(diǎn)P作PE⊥PD交射線BC于點(diǎn)E.
(1)如圖1,求證:PD=PE;
(2)若正方形ABCD的邊長(zhǎng)為4,,求CE長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩個(gè)商場(chǎng)出售相同的某種商品,每件售價(jià)均為3000元,并且多買(mǎi)都有一定的優(yōu)惠.甲商場(chǎng)的優(yōu)惠條件是:第一件按原售價(jià)收費(fèi),其余每件優(yōu)惠30%;乙商場(chǎng)的優(yōu)惠條件是:每件優(yōu)惠25%.設(shè)所買(mǎi)商品為x件時(shí),甲商場(chǎng)收費(fèi)為y1元,乙商場(chǎng)收費(fèi)為y2元.
(1)分別求出y1,y2與x之間的關(guān)系式;
(2)當(dāng)甲、乙兩個(gè)商場(chǎng)的收費(fèi)相同時(shí),所買(mǎi)商品為多少件?
(3)當(dāng)所買(mǎi)商品為5件時(shí),應(yīng)選擇哪個(gè)商場(chǎng)更優(yōu)惠?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】服裝店老板用4500元購(gòu)進(jìn)一批某款T恤衫,由于深受顧客喜愛(ài),很快售完,老板又用4950元購(gòu)進(jìn)第二批該款式T恤衫,所購(gòu)數(shù)量與第一批相同,但每件進(jìn)價(jià)比第一批多了9元.
(1)第一批該款式T恤衫每件進(jìn)價(jià)是多少元?
(2)老板以每件120元的價(jià)格銷售該款式T恤衫,當(dāng)?shù)诙鶷恤衫售出時(shí),出現(xiàn)了滯銷,于是決定降價(jià)促銷,若要使第二批的銷售利潤(rùn)不低于650元,剩余的T恤衫每件售價(jià)至少要多少元?(利潤(rùn)=售價(jià)-進(jìn)價(jià))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)O為坐標(biāo)原點(diǎn),拋物線與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,點(diǎn)B的坐標(biāo)為(3,0),直線經(jīng)過(guò)B、C兩點(diǎn).
(1)求拋物線的解析式;
(2)點(diǎn)P是x軸下方拋物線上一點(diǎn),連接AC,過(guò)點(diǎn)P作PQ∥AC交BC于點(diǎn)Q,過(guò)點(diǎn)Q作x軸的平行線,過(guò)點(diǎn)P作y軸的平行線,兩條直線相交于點(diǎn)K,PK交BC于點(diǎn)H,設(shè)QK的長(zhǎng)為t,PH的長(zhǎng)為d,求d與t之間的函數(shù)關(guān)系式;(不要求寫(xiě)出自變量t的取值范圍)
(3)在(2)的條件下,PK交x軸于點(diǎn)R,過(guò)點(diǎn)R作RT⊥PQ,垂足為T(mén),當(dāng)PK=PT時(shí),將線段QT繞點(diǎn)Q逆時(shí)針旋轉(zhuǎn)90得到線段QL,M是線段PQ上一動(dòng)點(diǎn),過(guò)點(diǎn)M作直線AC的垂線,垂足為N,連接ON、ML,當(dāng)ML∥ON時(shí),求N點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線AB分別與x軸、y軸交于點(diǎn)B、C,與直線OA交于點(diǎn)A.已知點(diǎn)A的坐標(biāo)為(﹣3,5),OC=4.
(1)分別求出直線AB、AO的解析式;
(2)求△ABO的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知:四邊形ABCD是平行四邊形,點(diǎn)E在邊BA的延長(zhǎng)線上,CE交AD于點(diǎn)F,∠ECA=∠D
(1)求證:△EAC∽△ECB;
(2)若DF=AF,求AC:BC的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且BC=CD.
(1)求證:△BCE≌△DCF;
(2)求證:AB+AD=2AE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】光明奶粉每袋標(biāo)準(zhǔn)質(zhì)量為454克,在質(zhì)量檢測(cè)中,超出標(biāo)準(zhǔn)質(zhì)量2克,記為克,低于標(biāo)準(zhǔn)質(zhì)量2克,記為克.若質(zhì)量低于標(biāo)準(zhǔn)質(zhì)量3克和3克以上,則這袋奶粉視為不合格產(chǎn)品,現(xiàn)抽取10袋樣品進(jìn)行質(zhì)量檢測(cè),結(jié)果如下(單位:克)
袋號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
記作 | 0 | 1 |
(1)這10袋奶粉中,有哪幾袋不合格?
(2)這10袋奶粉中質(zhì)量最多的是哪袋?它的實(shí)際質(zhì)量是多少?
(3)這10袋奶粉中質(zhì)量最少的是哪袋?它的實(shí)際質(zhì)量是多少?
(4)與標(biāo)準(zhǔn)質(zhì)量比較,10袋奶粉總計(jì)超過(guò)或不足多少克?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com