【題目】如圖,ABC內(nèi)接于⊙O,直徑DEAB于點F,交BC于點 MDE的延長線與AC的延長線交于點N,連接AM

1)求證:AMBM;

2)若AMBM,DE8,∠N15°,求BC的長.

【答案】1)見解析;(2+

【解析】

1)由垂徑定理可求得AFBF,可知DEAB的垂直平分線,可得AMBM;

2)連接AO,BO,可求得∠ACB60°,可求得∠AOF,由DE的長可知AO,在RtAOF中得AF,在RtAMF中可求得AM,在RtACM中,由,可求得CM,則可求得BC的長.

1)證明:

∵直徑DEAB于點F,

AFBF,

AMBM;

2)連接AOBO,如圖,

由(1)可得 AMBM,

AMBM

∴∠MAF=∠MBF45°,

∴∠CMN=∠BMF45°

AOBO,DEAB

∴∠AOF=∠BOF,

∵∠N15°,

∴∠ACM=∠CMN+N60°,即∠ACB60°

∵∠ACB

∴∠AOF=∠ACB60°

DE8,

AO4

RtAOF中,由,得AF,

RtAMF中,AM.得BM= AM,

RtACM中,由,得CM,

BCCM+BM+

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】探究:如圖①,直線l1l2l3,點Cl2上,以點C為直角頂點作∠ACB90°,角的兩邊分別交l1l3于點A、B,連結(jié)AB,過點CCDl1于點D,延長DCl3于點E

1)求證:ACD∽△CBE

2)應(yīng)用:如圖②,在圖①的基礎(chǔ)上,設(shè)ABl2的交點為F,若ACBC,l1l2之間的距離為2,l2l3之間的距離為1,則AF的長度是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在 10×6 的正方形網(wǎng)格中,每個小正方形的邊長均為 1,線段 AB 的端點 AB 均在小正方形的頂點上.

1)在圖中畫出以 AB 為一腰的等腰ABC,點 C 在小正方形頂點上,ABC 為鈍角三角形,且ABC 的面積為

2)在圖中畫出以 AB 為斜邊的直角三角形 ABD, D在小正方形的頂點上,且 AD>BD;

3)連接 CD,請你直接寫出線段 CD 的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線AB與拋物線Cyax2+2x+c相交于點A(1,0)和點B(2,3)兩點.

(1)求拋物線C函數(shù)表達式;

(2)若點M是位于直線AB上方拋物線上的一動點,當的面積最大時,求此時的面積S及點M的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,點A3,3),點B40),點C0,﹣1).

1)以點C為中心,把ABC逆時針旋轉(zhuǎn)90°,請在圖中畫出旋轉(zhuǎn)后的圖形A′B′C,點B′的坐標為________;

2)在(1)的條件下,求出點A經(jīng)過的路徑的長(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以△ABC的三條邊為邊,分別向外作正方形,連接EFGH,DJ,如果△ABC的面積為8,則圖中陰影部分的面積為(

A.28B.24C.20D.16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,弦CDAB于點E,G上一動點,AG,DC的延長線交于點F,連接AC,ADGC,GD

1)求證:∠FGC=∠AGD;

2)若AD6

①當ACDG,CG2時,求sinADG;

②當四邊形ADCG面積最大時,求CF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,AB6,EAB的中點,將△ADE沿DE翻折得到△FDE,延長EFBCG,FHBC,垂足為H,連接BF、DG.以下結(jié)論:BFED;DFG≌△DCG;FHB∽△EAD;tan∠GEB;SBFG2.6;其中正確的個數(shù)是( )

A. 2B. 3C. 4D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=AC,∠A為銳角,CDAB邊上的高,點O為△ACD的內(nèi)切圓圓心,則∠AOB=____

查看答案和解析>>

同步練習(xí)冊答案