【題目】如圖,已知在平面直角坐標(biāo)系xOy中,O是坐標(biāo)原點(diǎn),點(diǎn)A(2,5)在反比例函數(shù)的圖象上,過點(diǎn)A的直線y=x+b交x軸于點(diǎn)B.
(1)求k和b的值;
(2)求△OAB的面積.
(3)請(qǐng)根據(jù)圖象直接寫出當(dāng)x取何值時(shí) ,一次函數(shù)值大于反比例函數(shù)值。
【答案】(1)k=10,b=3;
(2)△AOB的面積為;
(3)當(dāng)-5<x<0 或 x>2時(shí) ,一次函數(shù)值大于反比例函數(shù)值
【解析】解:(1)把A(2,5)分別代入 和,得
解得 , .
(2)作AC⊥x軸與點(diǎn)C,
由(1)得直線AB的表達(dá)式為 ,∴點(diǎn)B的坐標(biāo)為(-3,0),OB=3,
點(diǎn)A的坐標(biāo)是(2,5).∴AC=5.
.
(3)因?yàn)橹本 與雙曲線 的兩個(gè)交點(diǎn)的坐標(biāo)分別為A(2,5),D(-5,-2),所以根據(jù)圖象得,當(dāng) -5<x<0 或 x>2時(shí),一次函數(shù)值大于反比例函數(shù)值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD、BE分別是△ABC的中線,AD、BE相交于點(diǎn)F.
(1)△ABC與△ABD的面積有怎樣的數(shù)量關(guān)系?為什么?
(2)△BDF與△AEF的面積有怎樣的數(shù)量關(guān)系?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在1,-1,-2這三個(gè)數(shù)中,任意兩數(shù)之和的最大值是( ).
A. 1 B. 0 C. -1 D. -3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,點(diǎn)D從點(diǎn)C出發(fā)沿CA方向以4cm/秒的速度向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)點(diǎn)E從點(diǎn)A出發(fā)沿AB方向以2cm/秒的速度向點(diǎn)B勻速運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)點(diǎn)D、E運(yùn)動(dòng)的時(shí)間是t秒(0<t≤15).過點(diǎn)D作DF⊥BC于點(diǎn)F,連接DE,EF.
(1)求證:AE=DF;
(2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值,如果不能,說明理由;
(3)當(dāng)t為何值時(shí),△DEF為直角三角形?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“新禧”雜貨店去批發(fā)市場(chǎng)購買某種新型兒童玩具,第一次用1200元購得玩具若干個(gè),并以7元的價(jià)格出售,很快就售完.由于該玩具深受兒童喜愛,第二次進(jìn)貨時(shí)每個(gè)玩具的批發(fā)價(jià)已比第一次提高了20%,他用1500元所購買的玩具數(shù)量比第一次多10個(gè),再按8元售完,問該老板兩次一共賺了多少錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:在△ABC中,BE、CF分別是AC、AB兩邊上的高,在BE上截取BD=AC,在CF的延長線上截取CG=AB,連接AD、AG.
(1)求證:AD=AG;
(2)AD與AG的位置關(guān)系如何,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com