(2012•啟東市模擬)如圖,點E、F是以線段BC為公共弦的兩條圓弧的中點,BC=6.點A、D分別為線段EF、BC上的動點.連接AB、AD,設(shè)BD=x,AB2-AD2=y,下列圖象中,能表示y與x的函數(shù)關(guān)系的圖象是( )

A.
B.
C.
D.
【答案】分析:延長EF與弦BC相交于點G,根據(jù)條件先正面EF的延長線垂直平分BC,利用勾股定理得到y(tǒng)=AB2-AD2=BG2+AG2-DG2-AG2=BG2-DG2,用含x的代數(shù)式表示即可得到函數(shù)關(guān)系式,從而判斷圖象.注意自變量的范圍是0<x≤6.
解答:解:延長EF與弦BC相交于點G
∵點E、F是以線段BC為公共弦的兩條圓弧的中點
∴點G是弦BC的中點,即BG=GC,EG⊥BC
又∵BD=x,BC=6,當(dāng)D在BG上時,DG=3-x;當(dāng)D在GC上時DG=x-3
故有y=BG2-DG2=
即y=6x-x2,0≤x≤6.
故選C.
點評:解決有關(guān)動點問題的函數(shù)圖象類習(xí)題時,關(guān)鍵是要根據(jù)條件找到所給的兩個變量之間的函數(shù)關(guān)系,尤其是在幾何問題中,更要注意基本性質(zhì)的掌握和靈活運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•啟東市模擬)(1)化簡(
x+1
x
-
x
x-1
1
(x-1)2
;
(2)解方程:
1
x-2
=
3-x
2-x
-3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年湖北省武漢市中考模擬考試數(shù)學(xué)試卷(解析版) 題型:解答題

(2012•啟東市模擬)如圖的平面直角坐標(biāo)系中,拋物線交x軸于A、B兩點(點B在點A的右側(cè)),交y軸于點C,以O(shè)C、OB為兩邊作矩形OBDC,CD交拋物線于G.
(1)求OC和OB的長;
(2)拋物線的對稱軸l在邊OB(不包括O、B兩點)上作平行移動,交x軸于點E,交CD于點F,交BC于點M,交拋物線于點P.設(shè)OE=m,PM=h,求h與m的函數(shù)關(guān)系式,并求出PM的最大值;
(3)連接PC,則在CD上方的拋物線部分是否存在這樣的點P,使得以P、C、F為頂點的三角形和△BEM相似?若存在,直接求出此時m的值,并直接判斷△PCM的形狀;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年廣東省汕頭市中考數(shù)學(xué)模擬試卷(二)(解析版) 題型:解答題

(2012•啟東市模擬)如圖的平面直角坐標(biāo)系中,拋物線交x軸于A、B兩點(點B在點A的右側(cè)),交y軸于點C,以O(shè)C、OB為兩邊作矩形OBDC,CD交拋物線于G.
(1)求OC和OB的長;
(2)拋物線的對稱軸l在邊OB(不包括O、B兩點)上作平行移動,交x軸于點E,交CD于點F,交BC于點M,交拋物線于點P.設(shè)OE=m,PM=h,求h與m的函數(shù)關(guān)系式,并求出PM的最大值;
(3)連接PC,則在CD上方的拋物線部分是否存在這樣的點P,使得以P、C、F為頂點的三角形和△BEM相似?若存在,直接求出此時m的值,并直接判斷△PCM的形狀;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年江蘇省無錫市天一實驗學(xué)校中考數(shù)學(xué)三模試卷(解析版) 題型:選擇題

(2012•啟東市模擬)如圖,點E、F是以線段BC為公共弦的兩條圓弧的中點,BC=6.點A、D分別為線段EF、BC上的動點.連接AB、AD,設(shè)BD=x,AB2-AD2=y,下列圖象中,能表示y與x的函數(shù)關(guān)系的圖象是( )

A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案