【題目】已知二次函數(shù) ,當自變量x取m時對應(yīng)的值大于0,當自變量x分別取m﹣1、m+1時對應(yīng)的函數(shù)值為y1、y2 , 則y1、y2必須滿足( )
A.y1>0、y2>0
B.y1<0、y2<0
C.y1<0、y2>0
D.y1>0、y2<0
【答案】B
【解析】解:令 =0, 解得:x= ,
∵當自變量x取m時對應(yīng)的值大于0,
∴ <m< ,
∵點(m+1,0)與(m﹣1,0)之間的距離為2,大于二次函數(shù)與x軸兩交點之間的距離,
∴m﹣1的最大值在左邊交點之左,m+1的最小值在右邊交點之右.
∴點(m+1,0)與(m﹣1,0)均在交點之外,
∴y1<0、y2<0.
故選:B.
【考點精析】認真審題,首先需要了解拋物線與坐標軸的交點(一元二次方程的解是其對應(yīng)的二次函數(shù)的圖像與x軸的交點坐標.因此一元二次方程中的b2-4ac,在二次函數(shù)中表示圖像與x軸是否有交點.當b2-4ac>0時,圖像與x軸有兩個交點;當b2-4ac=0時,圖像與x軸有一個交點;當b2-4ac<0時,圖像與x軸沒有交點.).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市某工藝品廠生產(chǎn)一款工藝品、已知這款工藝品的生產(chǎn)成本為每件60元. 經(jīng)市場調(diào)研發(fā)現(xiàn):該款工藝品每天的銷售量y(件)與售價x(元)之間存在著如下表所示的一次函數(shù)關(guān)系.
售價x(元) | … | 70 | 90 | … |
銷售量y(件) | … | 3000 | 1000 | … |
(利潤=(售價﹣成本價)×銷售量)
(1)求銷售量y(件)與售價x(元)之間的函數(shù)關(guān)系式;
(2)你認為如何定價才能使工藝品廠每天獲得的利潤為40000元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在研究相似問題時,甲、乙同學(xué)的觀點如下: 甲:將邊長為3、4、5的三角形按圖1的方式向外擴張,得到新三角形,它們的對應(yīng)邊間距為1,則新三角形與原三角形相似.
乙:將鄰邊為3和5的矩形按圖2的方式向外擴張,得到新的矩形,它們的對應(yīng)邊間距均為1,則新矩形與原矩形不相似.
對于兩人的觀點,下列說法正確的是( )
A.兩人都對
B.兩人都不對
C.甲對,乙不對
D.甲不對,乙對
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為全面開展“陽光大課間”活動,某中學(xué)三個年級準備成立“足球”、“籃球”、“跳繩”、“踢毽”四個課外活動小組,學(xué)校體育組根據(jù)七年級學(xué)生的報名情況(每人限報一項)繪制了兩幅不完整的統(tǒng)計圖(如圖),
請根據(jù)以上信息,完成下列問題:
(1)m= , n= , 并將條形統(tǒng)計圖補充完整;
(2)根據(jù)七年級的報名情況,試問全校2000人中,大約有多少人報名參加足球活動小組?
(3)根據(jù)活動需要,從“跳繩”小組的二男二女四名同學(xué)中隨機選取兩人到“踢毽”小組參加訓(xùn)練,請用列表或樹狀圖的方法計算恰好選中一男一女兩名同學(xué)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD是⊙O的弦,AB經(jīng)過圓心O,交⊙O于點C.∠DAB=∠B=30°.
(1)直線BD是否與⊙O相切?為什么?
(2)連接CD,若CD=5,求AB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABO中,已知點 、B(﹣1,﹣1)、O(0,0),正比例函數(shù)y=﹣x圖象是直線l,直線AC∥x軸交直線l與點C.
(1)C點的坐標為;
(2)以點O為旋轉(zhuǎn)中心,將△ABO順時針旋轉(zhuǎn)角α(90°≤α<180°),使得點B落在直線l上的對應(yīng)點為B′,點A的對應(yīng)點為A′,得到△A′OB′. ①∠α=;②畫出△A′OB′.
(3)寫出所有滿足△DOC∽△AOB的點D的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=5,BC=7,點E為BC上一動點,把△ABE沿AE折疊,當點B的對應(yīng)點B′落在∠ADC的角平分線上時,則點B′到BC的距離為( )
A.1或2
B.2或3
C.3或4
D.4或5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點D是等邊△ABC中BC邊的延長線上一點,且AC=CD,以AB為直徑作⊙O,分別交邊AC、BC于點E、點F
(1)求證:AD是⊙O的切線;
(2)連接OC,交⊙O于點G,若AB=4,求線段CE、CG與圍成的陰影部分的面積S.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】科研所計劃建一幢宿舍樓,因為科研所實驗中會產(chǎn)生輻射,所以需要有兩項配套工程:①在科研所到宿舍樓之間修一條筆直的道路;②對宿舍樓進行防輻射處理,已知防輻射費y萬元與科研所到宿舍樓的距離xkm之間的關(guān)系式為y=ax+b(0≤x≤9).當科研所到宿舍樓的距離為1km時,防輻射費用為720萬元;當科研所到宿舍樓的距離為9km或大于9km時,輻射影響忽略不計,不進行防輻射處理.設(shè)每公里修路的費用為m萬元,配套工程費w=防輻射費+修路費.
(1)當科研所到宿舍樓的距離x=9km時,防輻射費y=萬元,a= , b=
(2)若每公里修路的費用為90萬元,求當科研所到宿舍樓的距離為多少km時,配套工程費最少?
(3)如果配套工程費不超過675萬元,且科研所到宿舍樓的距離小于9km,求每公里修路費用m萬元的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com