【題目】如圖,相距千米的兩地間有一條筆直的馬路,地位于兩地之間且距千米,小明同學(xué)騎自行車從地出發(fā)沿馬路以每小時(shí)千米的速度向地勻速運(yùn)動(dòng),當(dāng)?shù)竭_(dá)地后立即以原來的速度返回,到達(dá)地停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為(時(shí)),小明的位置為點(diǎn).

(1)當(dāng)時(shí),求點(diǎn)間的距離

(2)當(dāng)小明距離千米時(shí),直接寫出所有滿足條件的

(3)在整個(gè)運(yùn)動(dòng)過程中,求點(diǎn)與點(diǎn)的距離(用含的代數(shù)式表示)

【答案】11.5k;(2;(3520-5t

【解析】

(1)根據(jù)速度,求出t=0.5時(shí)的路程,即可得到PC間的距離;

(2)分由AB,B返回A兩種情況,各自又分在點(diǎn)C的左右兩側(cè),分別求值即可;

(3)PA的距離為由ABB返回A兩種情況求值.

(1)由題知:

當(dāng)時(shí),,即

當(dāng)小明由A地去B地過程中:

AC之間時(shí), (小時(shí)),

在BC之間時(shí), (小時(shí)),

當(dāng)小明由B地返回A地過程中:

BC之間時(shí), (小時(shí)),

AC之間時(shí), (小時(shí)),

故滿足條件的t值為:

(3)當(dāng)小明從A運(yùn)動(dòng)到B的過程中,AP=vt= 5,

當(dāng)小明從B運(yùn)動(dòng)到A的過程中,AP= 20-vt= 20- 5t.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,∠BAC60°,∠B45°AB2,點(diǎn)DBC上的一個(gè)動(dòng)點(diǎn),點(diǎn)D關(guān)于ABAC的對(duì)稱點(diǎn)分別是點(diǎn)E,F,四邊形AEGF是平行四邊形,則四邊形AEGF面積的最小值是

A. 1B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某校一幢教學(xué)大樓的頂部豎有一塊傳承文明,啟智求真的宣傳牌CD.小明在山坡的坡腳A處測(cè)得宣傳牌底部D的仰角為60°,沿山坡向上走到B處測(cè)得宣傳牌頂部C的仰角為45°已知山坡AB的坡度i=1:,AB=10米,AE=15米,求這塊宣傳牌CD的高度(測(cè)角器的高度忽略不計(jì),結(jié)果精確到0.1米參考數(shù)據(jù):1.414,1.732)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面上有四個(gè)點(diǎn)AB,C,D

1)根據(jù)下列語句畫圖:

①畫射線BA;連接BD;

②畫直線ADBC相交于點(diǎn)E;

③在線段DC的延長線上取一點(diǎn)F,使CFBC,連接EF

2)點(diǎn)B與直線AD的關(guān)系是   ;

3)圖中以E為頂點(diǎn)的角中,小于平角的角共有   個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在一個(gè)長方形操場(chǎng)的四角都設(shè)計(jì)一塊半徑相同的四分之一圓形的花壇,若圓形的半徑為r米,廣場(chǎng)的長為a米,寬為b米.

(1)請(qǐng)列式表示操場(chǎng)空地的面積;

(2)若休閑廣場(chǎng)的長為 50米,寬為20米,圓形花壇的半徑為 3米,求操場(chǎng)空地的面積.(π取 3.14,計(jì)算結(jié)果保留 0.1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一只紙箱中裝有除顏色外完全相同的紅色、黃色、藍(lán)色乒乓球共100個(gè).從紙箱中任意摸出一球,摸到紅色球、黃色球的概率分別是0.2、0.3

1)試求出紙箱中藍(lán)色球的個(gè)數(shù);

2)小明向紙箱中再放進(jìn)紅色球若干個(gè),小麗為了估計(jì)放入的紅球的個(gè)數(shù),她將箱子里面的球攪勻后從中隨機(jī)摸出一個(gè)球記下顏色,再把它放回箱子中,多次重復(fù)上述過程后,她發(fā)現(xiàn)摸到紅球的頻率在0.5附近波動(dòng),請(qǐng)據(jù)此估計(jì)小明放入的紅球的個(gè)數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】以四邊形ABCD的邊AB、BC、CD、DA為斜邊分別向外側(cè)作等腰直角三角形,直角頂點(diǎn)分別為EF、GH,順次連接這四個(gè)點(diǎn),得四邊形EFGH

1)如圖1,當(dāng)四邊形ABCD為正方形時(shí),我們發(fā)現(xiàn)四邊形EFGH是正方形;如圖2,當(dāng)四邊形ABCD為矩形時(shí),請(qǐng)判斷:四邊形EFGH的形狀(不要求證明);

2)如圖3,當(dāng)四邊形ABCD為一般平行四邊形時(shí),設(shè)∠ADC=αα90°),

試用含α的代數(shù)式表示∠HAE

求證:HE=HG;

四邊形EFGH是什么四邊形?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,CD為大半圓的直徑,小半圓的圓心O1在線段CD上,大半圓O的弦AB與小半圓O1交于E、F,AB=6cm,EF=2cm,且AB∥CD。則陰影部分的面積為__________cm2(結(jié)果保留準(zhǔn)確數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)AB都在反比例函數(shù)y=x0)的圖像上,過點(diǎn)BBCx軸交y軸于點(diǎn)C,連接AC并延長交x軸于點(diǎn)D,連接BD,DA3DCSABD6.則k的值為_______

查看答案和解析>>

同步練習(xí)冊(cè)答案