【題目】已知銳角△ABC中,AB=AC,邊BC長(zhǎng)為6,高AD長(zhǎng)為4,正方形PQMN的兩個(gè)頂點(diǎn)在△ABC一邊上,另兩個(gè)頂點(diǎn)分別在△ABC的另兩邊上,則正方形PQMN的邊長(zhǎng)為( 。
A.B.或
C.或D.或
【答案】B
【解析】
分兩種情形:如圖1中,當(dāng)正方形的邊QM在BC上時(shí),設(shè)AD交PN于K,設(shè)正方形的邊長(zhǎng)為x,如圖2中,當(dāng)正方形的邊QM在AB邊上時(shí),作CH⊥AB于H交PN于K,設(shè)正方形的邊長(zhǎng)為x,分別利用相似三角形的性質(zhì)構(gòu)建方程解決問(wèn)題即可.
解:如圖1中,當(dāng)正方形的邊QM在BC上時(shí),設(shè)AD交PN于K,設(shè)正方形的邊長(zhǎng)為x,
∵PN∥BC,
∴△APN∽△ABC,
∴=,
∴=,
解得x=;
如圖2中,當(dāng)正方形的邊QM在AB邊上時(shí),作CH⊥AB于H交PN于K.設(shè)正方形的邊長(zhǎng)為x,
∵AB=AC,AD⊥BC,
∴BD=CD=3,
∵AD=4,
∴AB===5,
∵BCAD=ABCH,
∴CH=,
∵PN∥AB,
∴△CPN∽△CAB,
∴=,
∴=,
解得x=,
綜上所述,正方形的邊長(zhǎng)為或;
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)的圖象如圖所示,對(duì)稱(chēng)軸為x=1,給出下列結(jié)論:①abc<0;②b2>4ac;③4a+2b+c<0;④2a+b=0..其中正確的結(jié)論有:
A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了加快城鎮(zhèn)化建設(shè),某鎮(zhèn)對(duì)一條道路進(jìn)行改造,由甲、乙兩工程隊(duì)合作20天可完成.甲工程隊(duì)單獨(dú)施工比乙工程隊(duì)單獨(dú)施工多用30天完成此項(xiàng)工程.
(1)求甲、乙兩工程隊(duì)單獨(dú)完成此項(xiàng)工程各需要多少天?
(2)若甲工程隊(duì)獨(dú)做a天后,再由甲、乙兩工程隊(duì)合作施工y天,完成此項(xiàng)工程,試用含a的代數(shù)式表示y;
(3)如果甲工程隊(duì)施工每天需付施工費(fèi)1萬(wàn)元,乙工程隊(duì)施工每天需付施工費(fèi)2.5萬(wàn)元,甲工程隊(duì)至少要單獨(dú)施工多少天后,再由甲、乙兩工程隊(duì)合作施工完成剩下的工程,才能使施工費(fèi)不超過(guò)64萬(wàn)元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,半徑為R的⊙O的弦AC=BD,AC、BD交于E,F為上一點(diǎn),連AF、BF、AB、AD,下列結(jié)論:①AE=BE;②若AC⊥BD,則AD=R;③在②的條件下,若,AB=,則BF+CE=1.其中正確的是( 。
A.①②B.①③C.②③D.①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①拋物線y=ax2+bx+3(a≠0)與x軸,y軸分別交于點(diǎn)A(﹣1,0),B(3,0),點(diǎn)C三點(diǎn).
(1)試求拋物線的解析式;
(2)點(diǎn)D(2,m)在第一象限的拋物線上,連接BC,BD.試問(wèn),在對(duì)稱(chēng)軸左側(cè)的拋物線上是否存在一點(diǎn)P,滿足∠PBC=∠DBC?如果存在,請(qǐng)求出點(diǎn)P點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由;
(3)點(diǎn)N在拋物線的對(duì)稱(chēng)軸上,點(diǎn)M在拋物線上,當(dāng)以M、N、B、C為頂點(diǎn)的四邊形是平行四邊形時(shí),請(qǐng)直接寫(xiě)出點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正方形ABCD,對(duì)角線AC、BD交于點(diǎn)O,線段OE⊥OF,且與邊AD、AB交于點(diǎn)E、F.
(1)求證:OE=OF;
(2)連接EF,交AC于點(diǎn)H,若HF:AF=:2,求OH:EF;
(3)若E、F分別在DA、AB延長(zhǎng)線上,OE與AB交于點(diǎn)M,若△MOF∽△EAF,AF=1,求正方形ABCD的邊長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,曲線AB是拋物線的一部分(其中A是拋物線與y軸的交點(diǎn),B是頂點(diǎn)),曲線BC是雙曲線的一部分.曲線AB與BC組成圖形W由點(diǎn)C開(kāi)始不斷重復(fù)圖形W形成一組“波浪線”.若點(diǎn),在該“波浪線”上,則m的值為________,n的最大值為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】矩形ABCD的邊AB=4,邊AD上有一點(diǎn)M,連接BM,將MB繞M點(diǎn)逆時(shí)針旋轉(zhuǎn)90°得MN,N恰好落在CD上,過(guò)M、D、N作⊙O,⊙O與BC相切,Q為⊙O上的動(dòng)點(diǎn),連BQ,P為BQ中點(diǎn),連AP,則AP的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,為測(cè)量某建筑物AB的高度,在離該建筑物底部20m的點(diǎn)C處,目測(cè)建筑物頂端A處,視線與水平線夾角∠ADE為38.5°,目高CD為1.6m.求建筑物AB的高度.(結(jié)果精確到1m)(參考數(shù)據(jù):sin38.5°=0.623,cos38.5°=0.783,tan38.5°=0.795)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com