(2010•咸寧)在一條直線上依次有A、B、C三個港口,甲、乙兩船同時分別從A、B港口出發(fā),沿直線勻速駛向C港,最終達到C港.設甲、乙兩船行駛x(h)后,與B港的距離分別為y1、y2(km),y1、y2與x的函數(shù)關系如圖所示.
(1)填空:A、C兩港口間的距離為______km,a=______;
(2)求圖中點P的坐標,并解釋該點坐標所表示的實際意義;
(3)若兩船的距離不超過10km時能夠相互望見,求甲、乙兩船可以相互望見時x的取值范圍.

【答案】分析:(1)由甲船行駛的函數(shù)圖象可以看出,甲船從A港出發(fā),0.5h后到達B港,ah后到達C港,又由于甲船行駛速度不變,則可以求出a的值;
(2)分別求出0.5h后甲乙兩船行駛的函數(shù)表達式,聯(lián)立即可求解;
(3)將該過程劃分為0≤x≤0.5、0.5<x≤1、1<x三個范圍進行討論,得到能夠相望時x的取值范圍.
解答:解:(1)A、C兩港口間距離s=30+90=120km,
又由于甲船行駛速度不變,

則a=2(h).

(2)由點(3,90)求得,y2=30x.
當x>0.5時,由點(0.5,0),(2,90)求得,y1=60x-30.
當y1=y2時,60x-30=30x,
解得,x=1.
此時y1=y2=30.
所以點P的坐標為(1,30).
該點坐標的意義為:兩船出發(fā)1h后,甲船追上乙船,此時兩船離B港的距離為30km.

(3)①當x≤0.5時,由點(0,30),(0.5,0)求得,y1=-60x+30
依題意,(-60x+30)+30x≤10.解得,x≥.不合題意.
②當0.5<x≤1時,依題意,30x-(60x-30)≤10
解得,x≥.所以≤x≤1.(8分)
③當x>1時,依題意,(60x-30)-30x≤10
解得,x≤.所以1<x≤(9分)
④當2≤x≤3時,甲船已經(jīng)到了而乙船正在行駛,
∵90-30x≤10,解得x≥,
所以,當 ≤x≤3,甲、乙兩船可以相互望見;
綜上所述,當≤x≤時或當≤x≤3時,甲、乙兩船可以相互望見.
點評:此題為函數(shù)方程、函數(shù)圖象與實際結合的問題,同學們應加強這方面的訓練.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《銳角三角函數(shù)》(04)(解析版) 題型:解答題

(2010•咸寧)如圖,在⊙O中,直徑AB垂直于弦CD,垂足為E,連接AC,將△ACE沿AC翻折得到△ACF,直線FC與直線AB相交于點G.
(1)直線FC與⊙O有何位置關系?并說明理由;
(2)若OB=BG=2,求CD的長.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《三角形》(19)(解析版) 題型:解答題

(2010•咸寧)問題背景
(1)如圖,△ABC中,DE∥BC分別交AB,AC于D,E兩點,過點E作EF∥AB交BC于點F.請按圖示數(shù)據(jù)填空:
四邊形DBFE的面積S=______,△EFC的面積S1=______,△ADE的面積S2=______.
探究發(fā)現(xiàn)
(2)在(1)中,若BF=a,F(xiàn)C=b,DE與BC間的距離為h.請證明S2=4S1S2
拓展遷移
(3)如圖,?DEFG的四個頂點在△ABC的三邊上,若△ADG、△DBE、△GFC的面積分別為2、5、3,試利用(2)中的結論求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《一次函數(shù)》(04)(解析版) 題型:解答題

(2010•咸寧)在一條直線上依次有A、B、C三個港口,甲、乙兩船同時分別從A、B港口出發(fā),沿直線勻速駛向C港,最終達到C港.設甲、乙兩船行駛x(h)后,與B港的距離分別為y1、y2(km),y1、y2與x的函數(shù)關系如圖所示.
(1)填空:A、C兩港口間的距離為______km,a=______;
(2)求圖中點P的坐標,并解釋該點坐標所表示的實際意義;
(3)若兩船的距離不超過10km時能夠相互望見,求甲、乙兩船可以相互望見時x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年湖北省咸寧市中考數(shù)學試卷(解析版) 題型:解答題

(2010•咸寧)在一條直線上依次有A、B、C三個港口,甲、乙兩船同時分別從A、B港口出發(fā),沿直線勻速駛向C港,最終達到C港.設甲、乙兩船行駛x(h)后,與B港的距離分別為y1、y2(km),y1、y2與x的函數(shù)關系如圖所示.
(1)填空:A、C兩港口間的距離為______km,a=______;
(2)求圖中點P的坐標,并解釋該點坐標所表示的實際意義;
(3)若兩船的距離不超過10km時能夠相互望見,求甲、乙兩船可以相互望見時x的取值范圍.

查看答案和解析>>

同步練習冊答案