【題目】如圖,D是△ABC的邊AB上一點,CN∥AB,DN交AC于點M,若MA=MC.
(1)求證:CD=AN;
(2)若AC⊥DN,∠CAN=30°,MN=1,求四邊形ADCN的面積.
【答案】
(1)證明:
∵CN∥AB,
∴∠1=∠2.
在△AMD和△CMN中,
,
∴△AMD≌△CMN(ASA),
∴AD=CN.
又AD∥CN,
∴四邊形ADCN是平行四邊形,
∴CD=AN;
(2)解:∵AC⊥DN,∠CAN=30°,MN=1,
∴AN=2MN=2,
∴AM= = ,
∴S△AMN= AMMN= × ×1= .
∵四邊形ADCN是平行四邊形,
∴S四邊形ADCN=4S△AMN=2 .
【解析】(1)利用“平行四邊形ADCN的對邊相等”的性質(zhì)可以證得CD=AN;(2)根據(jù)“直角△AMN中的30度角所對的直角邊是斜邊的一半”求得AN=2MN=2,然后由勾股定理得到AM= ,則S四邊形ADCN=4S△AMN=2 .
【考點精析】根據(jù)題目的已知條件,利用勾股定理的概念和平行四邊形的判定與性質(zhì)的相關(guān)知識可以得到問題的答案,需要掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;若一直線過平行四邊形兩對角線的交點,則這條直線被一組對邊截下的線段以對角線的交點為中點,并且這兩條直線二等分此平行四邊形的面積.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy,已知二次函數(shù)y=﹣x2+bx的圖象過點A(4,0),頂點為B,連接AB、BO.
(1)求二次函數(shù)的表達(dá)式;
(2)若C是BO的中點,點Q在線段AB上,設(shè)點B關(guān)于直線CQ的對稱點為B',當(dāng)△OCB'為等邊三角形時,求BQ的長度;
(3)若點D在線段BO上,OD=2DB,點E、F在△OAB的邊上,且滿足△DOF與△DEF全等,求點E的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】李老師為了了解學(xué)生暑期在家的閱讀情況,隨機(jī)調(diào)查了20名學(xué)生某一天的閱讀小時數(shù),具體情況統(tǒng)計如下:
閱讀時間 (小時) | 2 | 2.5 | 3 | 3.5 | 4 |
學(xué)生人數(shù)(名) | 1 | 2 | 8 | 6 | 3 |
則關(guān)于這20名學(xué)生閱讀小時數(shù)的說法正確的是( )
A. 眾數(shù)是8 B. 中位數(shù)是3 C. 平均數(shù)是3 D. 方差是0.34
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某校教學(xué)樓AB后方有一斜坡,已知斜坡CD的長為12米,坡角α為60°,根據(jù)有關(guān)部門的規(guī)定,∠α≤39°時,才能避免滑坡危險,學(xué)校為了消除安全隱患,決定對斜坡CD進(jìn)行改造,在保持坡腳C不動的情況下,學(xué)校至少要把坡頂D向后水平移動多少米才能保證教學(xué)樓的安全?(結(jié)果取整數(shù))
(參考數(shù)據(jù):sin39°≈0.63,cos39°≈0.78,tan39°≈0.81,≈1.41,≈1.73,≈2.24)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】三軍受命,我解放軍各部隊奮力抗戰(zhàn)地救災(zāi)一線.現(xiàn)有甲、乙兩支解放軍小分隊將救災(zāi)物資送往某重災(zāi)小鎮(zhèn),甲隊先出發(fā),從部隊基地到小鎮(zhèn)只有唯一通道,且路程為24km,如圖是他們行走的路線關(guān)于時間的函數(shù)圖象,四位同學(xué)觀察此函數(shù)圖象得出有關(guān)信息,其中正確的個數(shù)是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小康放學(xué)回家后,問爸爸、媽媽火箭隊與太陽隊籃球比賽的結(jié)果,爸爸說:“本場比賽太陽隊的奧尼爾比火箭隊的姚明多得了12分”,媽媽說:“姚明得分的兩倍與奧尼爾得分的差大于10;奧尼爾得分的兩倍比姚明得分的3倍還多”,爸爸又說:“姚明得分超過20分,則火箭隊贏,否則太陽隊贏”。請你幫小康分析一下,究竟是哪個隊贏了,本場比賽姚明、奧尼爾各得了多少分?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com