【題目】如圖,在平行四邊形ABCD中,AE⊥BD于E.
(1)若BC=BD,tan∠ABE=3,DE=16,求BC的長.
(2)若∠DBC=45°,對角線AC、BD交于點O,F為AE上一點,且AF=2EO,求證:CF=CD.
【答案】(1)BC=20或16;(2)證明見解析.
【解析】
(1)根據(jù)題意設(shè)BC=x,則AD=BD=x,得到AE=3x﹣48,再根據(jù)勾股定理即可解答
(2)延長AE與BC交于點M,過點O作OG∥AE,分別交BC、CF于點G、H,連接EH,BF,并延長BF,與AD交于點N,連接DF,DG.可得到△BEM≌△BEF(SAS),再由此得到四邊形BGDN是正方形,最后證明△DNF≌△DGC(SAS),即可解答
(1)設(shè)BC=x,則AD=BD=x,
∵DE=16,
∴BE=x﹣16,
∵AE⊥BD,tan∠ABE=3,
∴AE=3(x﹣16)=3x﹣48,
在Rt△ADE中,由勾股定理得,
x2﹣(3x﹣48)2=162,
解得,x=20或16,
∴BC=20或16,
(2)延長AE與BC交于點M,過點O作OG∥AE,分別交BC、CF于點G、H,連接EH,BF,并延長BF,與AD交于點N,連接DF,DG.
∵AE⊥BD,
∴OG⊥BD,
∵OB=OD,
∴BG=DG,
∵∠DBC=45°,
∴∠BDG=45°,
∴∠BGD=90°,
∵OG∥AM,OA=OC,
∴OH= AF=OE,HF=HC,
∴∠OEH=∠OHE=45°=∠OBC,
∴EH∥BC,
∴EF=MF,
∵BE⊥MF,BF=BF,
∴△BEM≌△BEF(SAS),
∴∠MBE=∠EBF=45°,BM=BF,
∴∠DNB=∠NBG=90°,
∴四邊形BGDN是正方形,
∴DG=DN=BN=BG,
∴MG=FN,
∵AM∥OG,OA=OC,
∴MG=CG,
∴CG=FN,
在△DNF和△DGC中,
,
∴△DNF≌△DGC(SAS),
∴DF=DC,∠NDF=∠GDC,
∴∠FDC=∠NDG=90°,
∴CF= CD.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校為使高一新生入校后及時穿上合身的校服,現(xiàn)提前對某校九年級三班學(xué)生即將所穿校服型號情況進行了摸底調(diào)查,并根據(jù)調(diào)查結(jié)果繪制了如圖兩個不完整的統(tǒng)計圖(校服型號以身高作為標(biāo)準(zhǔn),共分為6個型號)
根據(jù)以上信息,解答下列問題:
(1)該班共有 名學(xué)生;
(2)在扇形統(tǒng)計圖中,185型校服所對應(yīng)的扇形圓心角的大小為 ;
(3)該班學(xué)生所穿校服型號的眾數(shù)為 ,中位數(shù)為 ;
(4)如果該校預(yù)計招收新生600名,根據(jù)樣本數(shù)據(jù),估計新生穿170型校服的學(xué)生大約有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,BD為一條對角線,AD∥BC,AD=2BC,∠ABD=90°,E為AD的中點,連接BE.
(1)求證:四邊形BCDE為菱形;
(2)連接AC,若AC平分∠BAD,BC=1,求AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為2的正方形BCD中,動點F、E分別以相同的速度從D、C兩點同時出發(fā)向C和B運動(任何一個點到達(dá)即停止),過點P作PM∥CD交BC于M點,PN∥BC交CD于N點,連接MN,在運動過程中,下列結(jié)論:①△ABE≌△BCF;②AE⊥BF;③CF2=PEBF;④線段MN的最小值為﹣1.其中正確的結(jié)論有_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某廠家以A、B兩種原料,利用不同的工藝手法生產(chǎn)出了甲、乙兩種袋裝產(chǎn)品,其中,甲產(chǎn)品每袋含1.5千克A原料、1.5千克B原料;乙產(chǎn)品每袋含2千克A原料、1千克B原料.甲、乙兩種產(chǎn)品每袋的成本價分別為袋中兩種原料的成本價之和.若甲產(chǎn)品每袋售價72元,則利潤率為20%.某節(jié)慶日,廠家準(zhǔn)備生產(chǎn)若干袋甲產(chǎn)品和乙產(chǎn)品,甲產(chǎn)品和乙產(chǎn)品的數(shù)量和不超過100袋,會計在核算成本的時候把A原料和B原料的單價看反了,后面發(fā)現(xiàn)如果不看反,那么實際成本比核算時的成本少500元,那么廠家在生產(chǎn)甲乙兩種產(chǎn)品時實際成本最多為_____元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,BC=4,⊙P與△ABC的邊或邊的延長線相切.若⊙P半徑為2,△ABC的面積為5,則△ABC的周長為( 。
A. 10B. 8C. 14D. 13
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD是△ABC的邊BC的中線,E是AD的中點,過點A作AF∥BC,交BE的延長線于點F,連接CF,BF交AC于G.
(1)若四邊形ADCF是菱形,試證明△ABC是直角三角形;
(2)求證:CG=2AG.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將拋物線y1=x2﹣2x﹣3先向左平移1個單位,再向上平移4個單位后,與拋物線y2=ax2+bx+c重合,現(xiàn)有一直線y3=2x+3與拋物線y2=ax2+bx+c相交.當(dāng)y2≤y3時自變量x的取值范圍是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=2,AD=2,點E為線段CD的中點,動點F從點C出發(fā),沿C→B→A的方向在CB和BA上運動,將矩形沿EF折疊,點C的對應(yīng)點為C’,當(dāng)點C’恰好落在矩形的對角線上時(不與矩形頂點重合),點F運動的距離為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com