【題目】能夠刻畫一組數(shù)據(jù)離散程度的統(tǒng)計量是( )
A. 平均數(shù)
B. 眾數(shù)
C. 中位數(shù)
D. 方差
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一個轉(zhuǎn)盤(如圖所示),被分成6個相等的扇形,顏色分為紅、綠、黃三種,指針的位置固定,轉(zhuǎn)動轉(zhuǎn)盤后任其自由停止,其中的某個扇形會恰好停在指針?biāo)傅奈恢茫ㄖ羔樦赶騼蓚扇形的交線時,重新轉(zhuǎn)動).下列事件:①指針指向紅色;②指針指向綠色;③指針指向黃色;④指針不指向黃色.估計各事件的可能性大小,完成下列問題:
(1)可能性最大和最小的事件分別是哪個?(填寫序號)
(2)將這些事件的序號按發(fā)生的可能性從小到大的順序排列: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若一組數(shù)據(jù)-1,0,2,4,x的極差為7,則x的值是( 。
A. -3 B. 6 C. 7 D. 6或-3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】三角形的內(nèi)角和為180°,已知三角形的第一個內(nèi)角是第二個內(nèi)角的3 倍,第三個內(nèi)角比第二個內(nèi)角小20°,求三角形每個內(nèi)角的度數(shù)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,圓上有五個點,這五個點將圓分成五等份(每一份稱為一段弧長),把這五個點按順時針方向依次編號為1,2,3,4,5.若從某一點開始,沿圓周順時針方向行走,點的編號是數(shù)字幾,就走幾段弧長,我們把這種走法稱為一次“移位”.
如:小明在編號為3的點,那么他應(yīng)走3段弧長,即從3→4→5→1為第1次“移位”,這時他到達編號為1的點,那么他應(yīng)走1段弧長,即從1→2為第2次“移位”.
若小明從編號為4的點開始,第1次“移位”后,他到達編號為 的點,…,第2016次“移位”后,他到達編號為 的點.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解答題唐代大詩人李白喜好飲酒作詩,民間有“李白斗酒詩百篇”之說.《算法統(tǒng)宗》中記載了一個“李白沽酒”的故事.詩云:
注:古代一斗是10升.
大意是:李白在郊外春游時,做出這樣一條約定:遇 見朋友,先到酒店里將壺里的酒增加一倍,再喝掉其中的19升酒.按照這樣的約定,在第3個店里遇到朋友正好喝光了壺中的酒.
(1)列方程求壺中原有多少升酒;
(2)設(shè)壺中原有a0升酒,在第n個店飲酒后壺中余an升酒,如第一次飲后所余酒為a1=2a0﹣19(升),第二次飲后所余酒為a2=2a1﹣19=2(2a0﹣19)﹣19=22a0﹣(21+1)×19(升),….
①用an﹣1的表達式表示an , 再用a0和n的表達式表示an;
②按照這個約定,如果在第4個店喝光了壺中酒,請借助①中的結(jié)論求壺中原有多少升酒.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們把a、b兩個數(shù)中較小的數(shù)記作min{a,b},直線y=kx﹣k﹣2(k<0)與函數(shù)y=min{x2﹣1、﹣x+1}的圖象有且只有2個交點,則k的取值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,CD為⊙O的直徑,CD⊥AB,垂足為點F,AO⊥BC,垂足為點E,AO=1.
(1)求∠C的大小;
(2)求陰影部分的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com