解:(1)如圖1,∵∠AOB=90°,∠BOC=60°,
∴∠AOC=90°+60°=150°,
∵OM平分∠AOC,ON平分∠BOC,
∴∠MOC=
∠AOC=75°,∠NOC=
∠BOC=30°
∴∠MON=∠MOC-∠NOC=45°.
(2)如圖2,∠MON=
α,
理由是:∵∠AOB=α,∠BOC=60°,
∴∠AOC=α+60°,
∵OM平分∠AOC,ON平分∠BOC,
∴∠MOC=
∠AOC=
α+30°,∠NOC=
∠BOC=30°
∴∠MON=∠MOC-∠NOC=(
α+30°)-30°=
α.
(3)如圖3,∠MON=
α,與β的大小無關(guān).
理由:∵∠AOB=α,∠BOC=β,
∴∠AOC=α+β.
∵OM是∠AOC的平分線,ON是∠BOC的平分線,
∴∠MOC=
∠AOC=
(α+β),
∠NOC=
∠BOC=
β,
∴∠AON=∠AOC-∠NOC=α+β-
β=α+
β.
∴∠MON=∠MOC-∠NOC
=
(α+β)-
β=
α
即∠MON=
α.
分析:(1)求出∠AOC度數(shù),求出∠MOC和∠NOC的度數(shù),代入∠MON=∠MOC-∠NOC求出即可;
(2)求出∠AOC度數(shù),求出∠MOC和∠NOC的度數(shù),代入∠MON=∠MOC-∠NOC求出即可;
(3)求出∠AOC度數(shù),求出∠MOC和∠NOC的度數(shù),代入∠MON=∠MOC-∠NOC求出即可.
點評:本題考查了角平分線定義和角的有關(guān)計算,關(guān)鍵是求出∠AOC、∠MOC、∠NOC的度數(shù)和得出∠MON=∠MOC-∠NOC.