【題目】已知二次函數(shù)y=ax2+bx+c的圖象上部分點的橫坐標(biāo)x與縱坐標(biāo)y的對應(yīng)值如下表:

那么關(guān)于它的圖象,下列判斷正確的是( 。

A. 開口向上 B. x軸的另一個交點是(30

C. y軸交于負(fù)半軸 D. 在直線x=1的左側(cè)部分是下降的

【答案】B

【解析】A、由表格知,拋物線的頂點坐標(biāo)是(1,4).故設(shè)拋物線解析式為y=a(x﹣1)2+4.

將(﹣1,0)代入,得

a(﹣1﹣1)2+4=0,

解得a=﹣2.

∵a=﹣2<0,

∴拋物線的開口方向向下,

故本選項錯誤;

B、拋物線與x軸的一個交點為(﹣1,0),對稱軸是x=1,則拋物線與x軸的另一個交點是(3,0),故本選項正確;

C、由表格知,拋物線與y軸的交點坐標(biāo)是(0,3),即與y軸交于正半軸,故本選項錯誤;

D、拋物線開口方向向下,對稱軸為x=1,則在直線x=1的左側(cè)部分是上升的,故本選項錯誤;

故選:B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列文字與例題,并解答。

將一個多項式分組進(jìn)行因式分解后,可用提公因式法或公式法繼續(xù)分解的方法稱作分組分解法。例如:以下式子的分解因式的方法叉稱為分組分解法。

1)試用“分組分解法”分解因式:

2)已知四個實數(shù)a,b,c,d滿足。并且,同時成立。

①當(dāng)k=1時,求a+c的值;

②當(dāng)k≠0時,用含a的代數(shù)式分別表示b、cd。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,AB6,AC5BC邊上的高AD4,則ABC的周長為__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)一次函數(shù)k,b是常數(shù),且).

1)若該函數(shù)的圖象過點,試判斷點是否也在此函數(shù)的圖象上,并說明理由.

2)已知點和點都在該一次函數(shù)的圖象上,求k的值.

3)若,點在該一次函數(shù)圖象上,求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,A=40°,ABC的外角∠CBD的平分線BEAC的延長線于點E.

(1)求∠CBE的度數(shù);

(2)過點DDFBE,交AC的延長線于點F,求∠F的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】市化工材料經(jīng)銷公司購進(jìn)一種化工原料若干千克,價格為每千克30元.物價部門規(guī)定其銷售單價不高于每千克60元,不低于每千克30元.經(jīng)市場調(diào)查發(fā)現(xiàn):日銷售量(千克)是銷售單價(元)的一次函數(shù),且當(dāng)=40時,=120;=50時,=100.在銷售過程中,每天還要支付其他費(fèi)用500元.

(1)求出的函數(shù)關(guān)系式,并寫出自變量的取值范圍.

(2)求該公司銷售該原料日獲利(元)與銷售單價(元)之間的函數(shù)關(guān)系式.

(3)當(dāng)銷售單價為多少元時,該公司日獲利最大?最大獲利是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知DABC內(nèi)一點,CD平分∠ACBBDCD,∠A=ABD,若AC=9,BC=5,則CD的長為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,ABC 中,ABAC,∠BAC90D、E 分別在 BC、AC 邊上,連接 ADBE 相交于點 F,且∠CADABE

(1)求證:BFAC;

(2)如圖2,連接 CF,若 EFEC,求∠CFD 的度數(shù);

(3)如圖3,在⑵的條件下,若 AE3,求 BF 的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=﹣(x﹣h)2(h為常數(shù)),當(dāng)自變量x的值滿足2≤x≤5時,與其對應(yīng)的函數(shù)值y的最大值為﹣1,則h的值為(

A. 36 B. 16 C. 13 D. 46

查看答案和解析>>

同步練習(xí)冊答案