某公園有一圓弧形的拱橋,如圖已知拱橋所在的圓的半徑為10米,拱橋頂到水面
距離
米.
(1)求水面寬度的大��;
(2)當(dāng)水面上升到時(shí),從點(diǎn)
測得橋頂
的仰角為
,若
=3,求水面上升的高度.
(1)16(2)2
【解析】解:(1)設(shè)拱橋所在圓的圓心為,由題意可知,點(diǎn)
在
的延長線上,
聯(lián)結(jié),
∵,
∴
(1分)
在中,
,
∴
(2分)
∵,
是半徑,
∴
(2分)
即水面寬度的長為
米.[來源:ZXXK]
(2)設(shè)與
相交于點(diǎn)
,聯(lián)結(jié)
,
∵
∴,
∴,
(1分)
在中,
,
∴
(1分)
設(shè)水面上升的高度為米,即
,則
,
∴
在中,
,
, 化簡得
解得(舍去),
(2分)
答:水面上升的高度為2米
(1)設(shè)拱橋所在圓的圓心為O,由題意可知,點(diǎn)O在DC的延長線上,連接OA,在Rt△ADO中利用勾股定理求出AD的長,再由垂徑定理求出AB=2AC即可得出答案;
(2)設(shè)OD與EF相交于點(diǎn)G,連接OE,由EF∥AB,OD⊥AB,可知OD⊥EF,∠EGC=∠EGO=90°,在Rt△EGC中,由cotα=EG/CG =3,可知EG=3CG,設(shè)水面上升的高度為x米,即DG=x,則CG=4-x,則EG=12-3x,在Rt△EGO中,利用勾股定理即可求出x的值,進(jìn)而得出結(jié)論.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2012屆上海市松江初三二模數(shù)學(xué)試卷(帶解析) 題型:解答題
某公園有一圓弧形的拱橋,如圖已知拱橋所在的圓的半徑為10米,拱橋頂到水面
距離
米.
(1)求水面寬度的大�。�
(2)當(dāng)水面上升到時(shí),從點(diǎn)
測得橋頂
的仰角為
,若
=3,求水面上升的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2012年四川省廣元市虎跳中學(xué)中考數(shù)學(xué)模擬試卷(三)(解析版) 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2012年上海市松江區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com