【題目】如圖,⊙O是△ABC的外接圓,AD是⊙O的直徑,EA是⊙O的切線.若∠EAC=120°,則∠ABC的度數(shù)是( )
A.80°
B.70°
C.60°
D.50°
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有下列說法:①若DE∥AB,則∠DEF+∠EFB=180;
②能與∠DEF構(gòu)成內(nèi)錯角的角的個數(shù)有2個;③能與∠BFE構(gòu)
成同位角的角的個數(shù)有2個;④能與∠C構(gòu)成同旁內(nèi)角的角的個數(shù)有4個.其中結(jié)論正確的是( )
A. ①② B. ③④ C. ①③④ D. ①②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察圖①,由點A和點B可確定 條直線;
觀察圖②,由不在同一直線上的三點A、B和C最多能確定 條直線;
(1)動手畫一畫圖③中經(jīng)過A、B、C、D四點的所有直線,最多共可作 條直線;
(2)在同一平面內(nèi)任三點不在同一直線的五個點最多能確定 條直線、n個點(n≥2)最多能確定 條直線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,四邊形ABCD的對角線AC、BD交于點O,若OE=OF,DF∥BE.
(1)求證:△BOE≌△DOF;
(2)求證:四邊形DEBF是平行四邊形;
(3)若OD=OE=OF,則四邊形DEBF是什么特殊的四邊形,請證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,AB=6,AD=10,∠BAD的平分線交BC于點E,交DC的延長線于點F,BG⊥AE,垂足為G,AG=2.5,則△CEF的周長為
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知兩直線L1:y=k1x+b1,L2:y=k2x+b2,若L1⊥L2,則有k1k2=﹣1.
(1)應(yīng)用:已知y=2x+1與y=kx﹣1垂直,求k;
(2)直線經(jīng)過A(2,3),且與y=x+3垂直,求解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,線段AB和射線BM交于點B.
(1)利用尺規(guī)完成以下作圖,并保留作圖痕跡(不寫作法)
①在射線BM上作一點C,使AC=AB;
②作∠ABM 的角平分線交AC于D點;
③在射線CM上作一點E,使CE=CD,連接DE.
(2)在(1)所作的圖形中,猜想線段BD與DE的數(shù)量關(guān)系,并證明之.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了滿足學(xué)生借閱圖書的需求,計劃購買一批新書.為此,該校圖書管理員對一周內(nèi)本校學(xué)生從圖書館借出各類圖書的數(shù)量進(jìn)行了統(tǒng)計,結(jié)果如下圖.
請你根據(jù)統(tǒng)計圖中的信息,解答下列問題:
(1)補(bǔ)全條形圖和扇形圖;
(2)該校學(xué)生最喜歡借閱哪類圖書?
(3)該校計劃購買新書共600本,若按扇形統(tǒng)計圖中的百分比來相應(yīng)地確定漫畫、科普、文學(xué)、其它這四類圖書的購買量,求應(yīng)購買這四類圖書各多少本?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們知道,對任意一個正整數(shù)n都可以進(jìn)行這樣的分解:n=pq(p,q是正整數(shù),且p≤q),在n的所有這種分解中,如果p,q兩因數(shù)之差的絕對值最小,我們就稱pq是n的最佳分解,并規(guī)定:F(n)=,例如12可以分解為112,26或34,因為12-1>6-2>4-3,所以34是最佳分解,所以F(n)=。
(1)如果一個正整數(shù)是另外一個正整數(shù)b的平方,我們稱正整數(shù)a是完全平方數(shù),求證:對任意一個完全平方數(shù)m,總有F(m)=1
(2)如果一個兩位正整數(shù)t,t=10x+y。1≤x≤y≤9,x,y為自然數(shù)),交換其個位上的數(shù)與十位上的數(shù)得到的新數(shù)減去原來的兩位正整數(shù)所得的差為18,那么我們就稱這個數(shù)t為“吉祥數(shù)”,求所有“吉祥數(shù)”中F(t)的最大值。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com