【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b的圖象經(jīng)過(guò)點(diǎn)A-2,6),且與x軸相交于點(diǎn)B,與正比例函數(shù)y=3x的圖象交于點(diǎn)C,點(diǎn)C的橫坐標(biāo)為1

1)求k、b的值;

2)若點(diǎn)Dy軸上,且滿足SCOD=SBOC,求點(diǎn)D的坐標(biāo).

【答案】1;(2)點(diǎn)D的坐標(biāo)為(0,12)或(0,12).

【解析】

1)利用一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可求出點(diǎn)C的坐標(biāo),根據(jù)點(diǎn)A、C的坐標(biāo),利用待定系數(shù)法即可求出k、b的值;

2)首先求出點(diǎn)B的坐標(biāo),設(shè)點(diǎn)D的坐標(biāo)為(0m),根據(jù)三角形的面積公式結(jié)合SCODSBOC,即可得出關(guān)于m的一元一次方程,解之即可得出m的值,進(jìn)而可得出點(diǎn)D的坐標(biāo).

解:(1)當(dāng)x1時(shí),y3x3

∴點(diǎn)C的坐標(biāo)為(1,3),

A2,6)、C13)代入ykxb,得:,

解得:

2)由(1)可知直線AB解析式為:y=-x+4,

當(dāng)y0時(shí),有x40

解得:x4,

∴點(diǎn)B的坐標(biāo)為(4,0),

設(shè)點(diǎn)D的坐標(biāo)為(0m),

SCODSBOC,即

解得:m±12,

∴點(diǎn)D的坐標(biāo)為(012)或(0,12).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知正方形ABCD的頂點(diǎn)A(1,1),B(3,1),直線y=2x+b交邊AB于點(diǎn)E,交邊CD于點(diǎn)F,則直線y=2x+b y 軸上的截距b的變化范圍是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC和DEB中,已知AB=DE,還需添加兩個(gè)條件才能使ABC≌△DEC,不能添加的一組條件是

A.BC=EC,B=E B.BC=EC,AC=DC

C.BC=DC,A=D D.B=E,A=D

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知反比例函數(shù)y (m為常數(shù),且m≠5)

(1)若在其圖象的每個(gè)分支上,yx的增大而增大,求m的取值范圍;

(2)若其圖象與一次函數(shù)y=-x1的圖象的一個(gè)交點(diǎn)的縱坐標(biāo)是3,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=AC=4,BC=2,點(diǎn)P、E、F分別為邊BC、AB、AC上的任意點(diǎn),則PE+PF的最小值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一輛汽車行駛時(shí)的耗油量為0.1/千米,如圖是油箱剩余油量(升)關(guān)于加滿油后已行駛的路程(千米)的函數(shù)圖象.

(1)根據(jù)圖象,直接寫(xiě)出汽車行駛400千米時(shí),油箱內(nèi)的剩余油量,并計(jì)算加滿油時(shí)油箱的油量;

(2)求關(guān)于的函數(shù)關(guān)系式,并計(jì)算該汽車在剩余油量5升時(shí),已行駛的路程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC中,AB=4,BC=6,B=60°,將ABC沿射線BC的方向平移,得到A′B′C′,再將A′B′C′繞點(diǎn)A′逆時(shí)針旋轉(zhuǎn)一定角度后,點(diǎn)B′恰好與點(diǎn)C重合,則平移的距離和旋轉(zhuǎn)角的度數(shù)分別為(  )

A.4,30° B.2,60° C.1,30° D.3,60°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于一元二次方程,下列說(shuō)法:①若a+c=0,方程有兩個(gè)不等的實(shí)數(shù)根;②若方程有兩個(gè)不等的實(shí)數(shù)根,則方程也一定有兩個(gè)不等的實(shí)數(shù)根;③若c是方程的一個(gè)根,則一定有成立;④若m是方程的一個(gè)根,則一定有成立.其中正確地只有 ( )

A. ①② B. ②③ C. ③④ D. ①④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,已知AD是角平分線,∠B=66°,C=54°.

(1)求∠ADB,ADC的度數(shù);

(2)DEAC于點(diǎn)E,求∠ADE的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案