【題目】如圖,平行四邊形的兩個(gè)頂點(diǎn)在反比例函數(shù)的圖象上,點(diǎn)軸上,且兩點(diǎn)關(guān)于原點(diǎn)對(duì)稱,軸于點(diǎn),已知點(diǎn)的坐標(biāo)是(2,3).

1)求的值;

2)若的面積為2,求點(diǎn)的坐標(biāo).

【答案】(1)6 (2)(-4,0)

【解析】

1)將點(diǎn)的坐標(biāo)是(2,3)代入反比例函數(shù)解析式即可得出k的值;

2)設(shè)點(diǎn)P的坐標(biāo)為(0,m),直線AP的解析式為,依據(jù)三角形面積得出m的值,再根據(jù)A,P的坐標(biāo)求出直線AP的解析式,即可求出點(diǎn)D的坐標(biāo).

解:(1)∵點(diǎn)A(2,3)在反比例函數(shù)的圖象上,

;

2)設(shè)點(diǎn)P的坐標(biāo)為(0,m),直線AP的解析式為

依題意得

解得,即點(diǎn)P的坐標(biāo)為(0,2).

解得,因此直線AP的解析式為

∵點(diǎn)D在直線AP上,∴,解得

D點(diǎn)的坐標(biāo)為(-4,0)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線yax2+bx+3(a≠0)的對(duì)稱軸為直線x=﹣1,拋物線交x軸于A、C兩點(diǎn),與直線yx1交于A、B兩點(diǎn),直線AB與拋物線的對(duì)稱軸交于點(diǎn)E

(1)求拋物線的解板式.

(2)點(diǎn)P在直線AB上方的拋物線上運(yùn)動(dòng),若△ABP的面積最大,求此時(shí)點(diǎn)P的坐標(biāo).

(3)在平面直角坐標(biāo)系中,以點(diǎn)BE、C、D為頂點(diǎn)的四邊形是平行四邊形,請(qǐng)直接寫出符合條件點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠BAC90°,將ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°后得到AB′C′(點(diǎn)B的對(duì)應(yīng)點(diǎn)是點(diǎn)B′,點(diǎn)C的對(duì)應(yīng)點(diǎn)是點(diǎn)C′),連接CC′.若∠CC′B′32°,則∠B的大小是(

A.32°B.64°C.77°D.87°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在 ABCD中,CD=2AD,BEAD于點(diǎn)E,F(xiàn)DC的中點(diǎn),連結(jié)EF、BF,下列結(jié)論:①∠ABC=2ABF;EF=BF;S四邊形DEBC=2SEFB④∠CFE=3DEF,其中正確結(jié)論的個(gè)數(shù)共有( ).

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們規(guī)定:三角形任意兩邊的“極化值”等于第三邊上的中線和這邊一半的平方差.如圖1,在△ABC中,AOBC邊上的中線,ABAC的“極化值”就等于AO2BO2的值,可記為ABAC=AO2BO2

1)在圖1中,若∠BAC=90°,AB=8AC=6,AOBC邊上的中線,則ABAC= ,OCOA= ;

2)如圖2,在△ABC中,AB=AC=4,∠BAC=120°,求ABACBABC的值;

3)如圖3,在△ABC中,AB=AC,AOBC邊上的中線,點(diǎn)NAO上,且ON=AO.已知ABAC=14,BNBA=10,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB6AC4,∠A30°,線段AB上有一個(gè)動(dòng)點(diǎn)P,過點(diǎn)PPDBC,交ACD,連接PC,則△PCD的最大面積是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知拋物線的頂點(diǎn)坐標(biāo)為(0,1)且經(jīng)過點(diǎn)A1,2),直線y3x4經(jīng)過點(diǎn)Bn),與y軸交點(diǎn)為C

1)求拋物線的解析式及n的值;

2)將直線BC繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)45°,求旋轉(zhuǎn)后的直線的解析式;

3)如圖2將拋物線繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)45°得到新曲線,新曲線與直線BC交于點(diǎn)MN,點(diǎn)M在點(diǎn)N的上方,求點(diǎn)N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將矩形ABCD繞其右下角的頂點(diǎn)按順時(shí)針方向旋轉(zhuǎn)90°至圖位置,繼續(xù)繞右下角的頂點(diǎn)按順時(shí)針方向旋轉(zhuǎn)90°至圖位置,以此類推,這樣連續(xù)旋轉(zhuǎn)2017次.若AB=4AD=3,則頂點(diǎn)A在整個(gè)旋轉(zhuǎn)過程中所經(jīng)過的路徑總長(zhǎng)為( )

A. 2017π B. 2034π C. 3024π D. 3026π

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 如圖,矩形ABCD中,過對(duì)角線BD中點(diǎn)O的直線分別交AB,CD邊于點(diǎn)E、F

1)求證:四邊形BEDF是平行四邊形;

2)只需添加一個(gè)條件,即______,可使四邊形BEDF為菱形.

查看答案和解析>>

同步練習(xí)冊(cè)答案