如圖,在直徑為AB的半圓O上有一動(dòng)點(diǎn)P從A點(diǎn)出發(fā),按順時(shí)針?lè)较蚶@半圓勻速運(yùn)動(dòng)到B點(diǎn),然后再以相同的速度沿著直徑回到A點(diǎn)停止,線段OP的長(zhǎng)度d與運(yùn)動(dòng)時(shí)間t之間的函數(shù)關(guān)系用圖象描述大致是( )

A.
B.
C.
D.
【答案】分析:先根據(jù)圓的半徑為定值可知,在當(dāng)點(diǎn)P從點(diǎn)A到點(diǎn)B的過(guò)程中OP的長(zhǎng)度為定值,當(dāng)點(diǎn)P從點(diǎn)B到點(diǎn)O的過(guò)程中OP逐漸縮小,從點(diǎn)O到點(diǎn)A的過(guò)程中OP逐漸增大,由此即可得出結(jié)論.
解答:解:∵圓的半徑為定值,
∴在當(dāng)點(diǎn)P從點(diǎn)A到點(diǎn)B的過(guò)程中OP的長(zhǎng)度為定值,當(dāng)點(diǎn)P從點(diǎn)B到點(diǎn)O的過(guò)程中OP逐漸縮小,從點(diǎn)O到點(diǎn)A的過(guò)程中OP逐漸增大.
故選A.
點(diǎn)評(píng):本題考查的是定點(diǎn)問(wèn)題的函數(shù)圖象,熟知圓的特點(diǎn)是解答此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•貴陽(yáng))如圖,在直徑為AB的半圓O上有一動(dòng)點(diǎn)P從A點(diǎn)出發(fā),按順時(shí)針?lè)较蚶@半圓勻速運(yùn)動(dòng)到B點(diǎn),然后再以相同的速度沿著直徑回到A點(diǎn)停止,線段OP的長(zhǎng)度d與運(yùn)動(dòng)時(shí)間t之間的函數(shù)關(guān)系用圖象描述大致是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在直徑為AB的一塊半圓形土地上,畫(huà)出一塊三角形區(qū)域,使三角形的一邊為AB,頂點(diǎn)C在半圓上,其它兩邊長(zhǎng)分別為6cm和8cm,現(xiàn)要建造一個(gè)內(nèi)接于△ABC的矩形水池DEFN,其中DE在AB上,如圖所示的設(shè)計(jì)方案是使AC=8cm,BC=6cm。

(1)求△ABC中AB邊上的高h(yuǎn);

(2)設(shè)DN=x,當(dāng)x取何值時(shí),水池DEFN的面積最大?

(3)實(shí)際施工時(shí),發(fā)現(xiàn)在AB上距B點(diǎn)1.85m處有一棵大樹(shù),則這棵大樹(shù)是否位于最大矩形的邊上?如果在,為了保護(hù)大樹(shù),請(qǐng)你設(shè)計(jì)出另外的方案,使內(nèi)接于滿足條件的三角形中建最大矩形水池能避開(kāi)大樹(shù)。

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在直徑為AB的一塊半圓形土地上,畫(huà)出一塊三角形區(qū)域,使三角形的一邊為AB,頂點(diǎn)C在半圓上,其它兩邊長(zhǎng)分別為6cm和8cm,現(xiàn)要建造一個(gè)內(nèi)接于△ABC的矩形水池DEFN,其中DE在AB上,如圖所示的設(shè)計(jì)方案是使AC=8cm,BC=6cm。
(1)求△ABC中AB邊上的高h(yuǎn);
(2)設(shè)DN=x,當(dāng)x取何值時(shí),水池DEFN的面積最大?
(3)實(shí)際施工時(shí),發(fā)現(xiàn)在AB上距B點(diǎn)1.85m處有一棵大樹(shù),則這棵大樹(shù)是否位于最大矩形的邊上?如果在,為了保護(hù)大樹(shù),請(qǐng)你設(shè)計(jì)出另外的方案,使內(nèi)接于滿足條件的三角形中建最大矩形水池能避開(kāi)大樹(shù)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在直徑為AB的半圓O上有一動(dòng)點(diǎn)P從A點(diǎn)出發(fā),按順時(shí)針?lè)较蚶@半圓勻速運(yùn)動(dòng)到B點(diǎn),然后再以相同的速度沿著直徑回到A點(diǎn)停止,線段OP的長(zhǎng)度d與運(yùn)動(dòng)時(shí)間t之間的函數(shù)關(guān)系用圖象描述大致是

A.       B.      C.      D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012屆江蘇省沭陽(yáng)銀河學(xué)校九年級(jí)下學(xué)期質(zhì)量檢測(cè)數(shù)學(xué)卷 題型:解答題

如圖,在直徑為AB的一塊半圓形土地上,畫(huà)出一塊三角形區(qū)域,使三角形的一邊為AB,頂點(diǎn)C在半圓上,其它兩邊長(zhǎng)分別為6cm和8cm,現(xiàn)要建造一個(gè)內(nèi)接于△ABC的矩形水池DEFN,其中DE在AB上,如圖所示的設(shè)計(jì)方案是使AC=8cm,BC=6cm。
(1)求△ABC中AB邊上的高h(yuǎn);
(2)設(shè)DN=x,當(dāng)x取何值時(shí),水池DEFN的面積最大?
(3)實(shí)際施工時(shí),發(fā)現(xiàn)在AB上距B點(diǎn)1.85m處有一棵大樹(shù),則這棵大樹(shù)是否位于最大矩形的邊上?如果在,為了保護(hù)大樹(shù),請(qǐng)你設(shè)計(jì)出另外的方案,使內(nèi)接于滿足條件的三角形中建最大矩形水池能避開(kāi)大樹(shù)。

查看答案和解析>>

同步練習(xí)冊(cè)答案