【題目】數(shù)學(xué)課上,老師提出了這樣一個問題:如圖,己知.求作:過三點(diǎn)的圓.

小蕓是這樣思考的:圓心確定一個圈的位置,半徑確定一個圓的大小要作同時(shí)經(jīng)過幾個定點(diǎn)的圓,就是要先找到一個點(diǎn),使得這個點(diǎn)到這幾個定點(diǎn)的距離都相等.這樣既定了圓心,又定了半徑,就能畫出滿足條件的圓了.

小智聽了小蕓的分析后,按照這個思路很快就畫出了一個過三點(diǎn)的圓.

請你在答題紙上而出這個圓,并寫出作圖的主要依據(jù),

【答案】見解析

【解析】

作線段AB的垂直平分線,交ABO點(diǎn),則O點(diǎn)為線段AB的中點(diǎn),因?yàn)?/span>ABC是直角三角形,∠C=90°,而直角三角形斜邊上的中線等于斜邊的一半,所以以斜邊的中點(diǎn)為圓心,斜邊的一半為半徑作圓即可.

如圖:作線段AB的垂直平分線EF,交ABO點(diǎn),則O點(diǎn)為線段AB的中點(diǎn),以O為圓心, OA的長為半徑作圓,圓O就是所求的圓.

依據(jù):

EF垂直平分AB

OAB的中點(diǎn)

∵∠C=90°

OC=AB=OA=OB(直角三角形斜邊上的中線等于斜邊的一半)

O點(diǎn)到A、B、C的距離相等

∴以O為圓心,以OA的長為半徑作圓,圓OA、B、C三點(diǎn).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,(1)某學(xué)!爸腔鄯綀@”數(shù)學(xué)社團(tuán)遇到這樣一個題目:如圖1,在ABC中,點(diǎn)O在線段BC上,∠BAO20°,∠OAC80°,AO,BOCO13,求AB的長.經(jīng)過社團(tuán)成員討論發(fā)現(xiàn),過點(diǎn)BBDAC,交AO的延長線于點(diǎn)D,通過構(gòu)造ABD就可以解決問題(如圖2),請回答:∠ADB   °,AB   

2)請參考以上思路解決問題:如圖3,在四邊形ABCD中,對角線AC、BD相交于點(diǎn)O,ACAD,AO6,∠ABC=∠ACB75°,BOOD13,求DC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是二次函數(shù)yax2+bx+c圖象的一部分,其對稱軸是x=﹣1,且過點(diǎn)(30),說法:①abc0;②2ab0;③﹣a+c0;④若(5,y1)、(y2)是拋物線上兩點(diǎn),則y1y2,其中說法正確的有(  )個.

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將拋物線M1yax2+4x向右平移3個單位,再向上平移3個單位,得到拋物線M2,直線yxM1的一個交點(diǎn)記為A,與M2的一個交點(diǎn)記為B,點(diǎn)A的橫坐標(biāo)是﹣3

1)求a的值及M2的表達(dá)式;

2)點(diǎn)C是線段AB上的一個動點(diǎn),過點(diǎn)Cx軸的垂線,垂足為D,在CD的右側(cè)作正方形CDEF

當(dāng)點(diǎn)C的橫坐標(biāo)為2時(shí),直線yx+n恰好經(jīng)過正方形CDEF的頂點(diǎn)F,求此時(shí)n的值;

在點(diǎn)C的運(yùn)動過程中,若直線yx+n與正方形CDEF始終沒有公共點(diǎn),求n的取值范圍(直接寫出結(jié)果).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為備戰(zhàn)奧運(yùn)會,中國女排的姑娘們刻苦訓(xùn)練,為國爭光,如圖,已知排球場的長度 OD 18 米,位于球場中線處球網(wǎng)的高度 AB 2.43 米,一隊(duì)員站在點(diǎn) O 處發(fā)球,排球從點(diǎn) O 的正上方 1.8 米的 C 點(diǎn)向正前方飛出,當(dāng)排球運(yùn)行至離點(diǎn) O 的水平距離 OE 7 米時(shí),到達(dá)最高點(diǎn) G,建立如圖所示的平面直角坐標(biāo)系.

1)當(dāng)球上升的最大高度為 3.2 米時(shí),求排球飛行的高度 y(單位:米)與水平距離 x(單位:米)的函數(shù)關(guān)系式.(不要求寫出自變量 x 的取值范圍)

2)在(1)的條件下,對方距球網(wǎng) 0.5 米的點(diǎn) F 處有一隊(duì)員,她起跳后的最大高度為 3.1米,問這次她是否可以攔網(wǎng)成功?請通過計(jì)算說明.(不考慮排球的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】給出如下規(guī)定:兩個圖形,點(diǎn)上任一點(diǎn),點(diǎn)上任一點(diǎn),如果線段的長度存在最小值,就稱該最小值為兩個圖形之間的距離.

在平面直角坐標(biāo)系xOy中,0為坐標(biāo)原點(diǎn).

1)點(diǎn)的坐標(biāo)為,則點(diǎn)和射線之間的距離為______,點(diǎn)和射線之間的距離為    

2)如果直線和雙曲線之間的距離為,那么____;(可在圖1中進(jìn)行研究)

3)點(diǎn)的坐標(biāo)為,將射線繞原點(diǎn)逆時(shí)針旋轉(zhuǎn),得到射線,在坐標(biāo)平面內(nèi)所有和射線之間的距離相等的點(diǎn)所組成的圖形記為圖形

①請?jiān)趫D2中畫出圖形,井描述圖形的組成部分:(若涉及平面中某個區(qū)域時(shí)可以用陰影表示)

②將射線組成的圖形記為圖形,拋物線與圖形的公共部分記為圖形,請直接寫出圖形和圖形之間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料:

某同學(xué)遇到這樣一個問題:在平面直角坐標(biāo)系中,已知直線點(diǎn)在拋物線上,求點(diǎn)到直線的距離

如圖1,他過點(diǎn)于點(diǎn)軸分別交軸于點(diǎn)交直線于點(diǎn).他發(fā)現(xiàn),可求出的長,再利用求出的長,即為點(diǎn)到直線的距離

     

請回答:

(1)圖1中, ,點(diǎn)到直線的距離

參考該同學(xué)思考問題的方法,解決下列問題:

在平面直角坐標(biāo)系中,點(diǎn)是拋物線上的一動點(diǎn),設(shè)點(diǎn)到直線的距離為

(2)如圖2,

,則點(diǎn)的坐標(biāo)為

,在點(diǎn)運(yùn)動的過程中,求的最小值;

(3)如圖3,,在點(diǎn)運(yùn)動的過程中,的最小值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】使得關(guān)于x的分式方程2有正整數(shù)解,且關(guān)于x的不等式組至少有4個整數(shù)解,那么符合條件的所有整數(shù)a的和為( 。

A.20B.17C.9D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知正方形在平面直角坐標(biāo)系中,點(diǎn),分別在軸,軸的正半軸上,等腰直角三角形的直角頂點(diǎn)在原點(diǎn),,分別在,上,且,.將繞點(diǎn)逆時(shí)針旋轉(zhuǎn),得點(diǎn),旋轉(zhuǎn)后的對應(yīng)點(diǎn)為

(Ⅰ)①如圖①,求的長;②如圖②,連接,求證

(Ⅱ)將繞點(diǎn)逆時(shí)針旋轉(zhuǎn)一周,當(dāng)時(shí),求點(diǎn)的坐標(biāo)(直接寫出結(jié)果即可).

查看答案和解析>>

同步練習(xí)冊答案