四邊形一條對角線所在直線上的點,如果到這條對角線的兩端點的距離不相等,但到另一對角線的兩個端點的距離相等,則稱這點為這個四邊形的準等距點.如圖l,點P為四邊形ABCD對角線AC所在直線上的一點,PD=PB,PA≠PC,則點P為四邊形ABCD的準等距點.

(1)如圖2,畫出菱形ABCD的一個準等距點.

(2)如圖3,作出四邊形ABCD的一個準等距點(尺規(guī)作圖,保留作圖痕跡,不要求寫作法).

(3)如圖4,在四邊形ABCD中,P是AC上的點,PA≠PC,延長BP交CD于點E,延長DP交BC于點F,且∠CDF=∠CBE,CE=CF.求證:點P是四邊形ABCD的準等距點.

(4)試研究四邊形的準等距點個數(shù)的情況(說出相應四邊形的特征及準等距點的個數(shù),不必證明).

答案:
解析:

  解:(1)如圖2,點P即為所畫點.……………………1分(答案不唯一.畫圖正確,無文字說明不扣分;點P畫在AC中點不給分)

  (2)如圖3,點P即為所作點.……………………3分(答案不唯一.作圖正確,無文字說明不扣分;無痕跡或痕跡不清晰的酌情扣分)

  (3)

  連結DB,在△DCF與△BCE中,∠DCF=∠BCE,∠CDF=∠CBE,∠CF=CE.

  ∴△DCF≌△BCE(AAS),……………………5分

  ∴CD=CB,

  ∴∠CDB=∠CBD.………………………………6分

  ∴∠PDB=∠PBD,……………………………7分

  ∴PD=PB,

  ∵PA≠PC

  ∴點P是四邊形ABCD的準等距點.……8分

  (4)①當四邊形的對角線互相垂直且任何一條對角線不平分另一對角線或者對角線互相平分且不垂直時,準等距點的個數(shù)為0個;…………………9分

 、诋斔倪呅蔚膶蔷不互相垂直,又不互相平分,且有一條對角線的中垂線經(jīng)過另一對角線的中點時,準等距點的個數(shù)為1個;…………10分

 、郛斔倪呅蔚膶蔷既不互相垂直又不互相平分,且任何一條對角線的中垂線都不經(jīng)過另一條對角線的中點時,準等距點的個數(shù)為2個;…………11分

 、芩倪呅蔚膶蔷互相垂直且至少有一條對角線平分另一對角線時,準等距點有無數(shù)個.1分(答案不唯一.畫圖正確,無文字說明不扣分;點P畫在AC中點不給分)…………………………………………………………12分

  (第(4)小題只說出準等距點的個數(shù),不能給滿分)


練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

25、四邊形一條對角線所在直線上的點,如果到這條對角線的兩端點的距離不相等,但到另一對角線的兩個端點的距離相等,則稱這點為這個四邊形的準等距點.如圖1,點P為四邊形ABCD對角線AC所在直線上的一點,PD=PB,PA≠PC,則點P為四邊形ABCD的準等距點.
(1)如圖2,畫出菱形ABCD的一個準等距點.
(2)如圖3,作出四邊形ABCD的一個準等距點.(尺規(guī)作圖,保留作圖痕跡,不要求寫作法)
(3)如圖4,在四邊形ABCD中,P是AC上的點,PA≠PC,延長BP交CD于點E,延長DP交BC于點F,且∠CDF=∠CBE,CE=CF.試說明點P是四邊形ABCD的準等距點.
(4)試研究四邊形的準等距點個數(shù)的情況.(說出相應四邊形的特征及此時準等距點的個數(shù),不必證明)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•保定一模)四邊形一條對角線所在直線上的點,如果到這條對角線的兩端點的距離不相等,但到另一對角線的兩個端點的距離相等,則稱這點為這個四邊形的準等距點.如圖,點P為四邊形ABCD對角線AC所在直線上的一點,PD=PB,PA≠PC,則點P為四邊形ABCD的準等距點.
(1)如圖2,畫出菱形ABCD的一個準等距點.
(2)如圖3,作出四邊形ABCD的一個準等距點(尺規(guī)作圖,保留作圖痕跡,不要求寫作法).
(3)如圖4,在四邊形ABCD中,P是AC上的點,PA≠PC,延長BP交CD于點E,延長DP交BC于點F,且∠CDF=∠CBE,CE=CF.求證:點P是四邊形ABCD的準等距點.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

四邊形一條對角線所在直線上的點,如果到這條對角線的兩端點的距離不相等,但到另一對角線的兩個端點的距離相等,則稱這點為這個四邊形的準等距點.如圖1,點P為四邊形ABCD對角線AC所在直線上的一點,PD=PB,PA≠PC,則點P為四邊形ABCD的準等距點.
(1)如圖2,畫出菱形ABCD的一個準等距點.
(2)如圖3,作出四邊形ABCD的一個準等距點(尺規(guī)作圖,保留作圖痕跡,不要求寫作法).
(3)如圖4,在四邊形ABCD中,P是AC上的點,PA≠PC,延長BP交CD于點E,延長DP交BC于點F,且∠CDF=∠CBE,CE=CF.求證:點P是四邊形ABCD的準等距點.
(4)試研究四邊形的準等距點個數(shù)的情況.(說出相應四邊形的特征及此時準等距點的個數(shù),不必證明)
①當四邊形的對角線互相垂直且任何一條對角線不平分另一條對角線或者對角線互相平分且不垂直時,準等距點的個數(shù)為
0
0
個;
②當四邊形的對角線既不垂直,又不互相平分,且有一條對角線的中垂線經(jīng)過另一對角線的中點時,準等距點的個數(shù)為
1
1
個;
③當四邊形的對角線既不垂直又不互相平分,且任何一條對角線的中垂線都不經(jīng)過另一條對角線的中點時,準等距點的個數(shù)為
2
2
個;
④當四邊形的對角線互相垂直且至少有一條對角線平分另一條對角線時,準等距點有
無數(shù)
無數(shù)
個(注意點P不能畫在對角線的中點上).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

四邊形一條對角線所在直線上的點,如果到這條對角線的兩端點的距離不相等,但到另一對角線的兩個端點的距離相等,則稱這點為這個四邊形的準等距點.如圖1,點P為四邊形ABCD對角線AC所在直線上的一點,PD=PB,PA≠PC,則點P為四邊形ABCD的準等距點.
(1)如圖2,畫出菱形ABCD的一個準等距點.
(2)如圖3,作出四邊形ABCD的一個準等距點(尺規(guī)作圖,保留作圖痕跡不要求寫作法).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如果四邊形一條對角線所在直線上有一點,它到這條對角線的兩端點的距離不相等,但到另一對角線的兩個端點的距離相等,則稱這個點為這個四邊形的準等距點.
(1)正方形ABCD的對角線AC上有沒有準等距點?請簡單說明理由;
(2)請回答長方形(正方形除外)、菱形、等腰梯形的準等距點的個數(shù)(不必證明);
(3)如圖所示,在四邊形ABCD中,P是AC上的點,PA≠PC,延長BP交CD于點E,延長DP交BC于點F,且∠CDF=∠CBE,CE=CF,證明點P是四邊形ABCD的準等距點.

查看答案和解析>>

同步練習冊答案