已知關(guān)于x的一元二次方程kx2+(3k+1)x+3=0(k≠0).
(1)求證:無(wú)論k取何值,方程總有兩個(gè)實(shí)數(shù)根;
(2)若二次函數(shù)y=kx2+(3k+1)x+3的圖象與x軸兩個(gè)交點(diǎn)的橫坐標(biāo)均為整數(shù),且k為整數(shù),求k的值.
解:
分析:(1)先計(jì)算判別式得值得到△=(3k+1)2-4k×3=(3k-1)2,然后根據(jù)非負(fù)數(shù)的性質(zhì)得到△≥0,則根據(jù)判別式的意義即可得到結(jié)論;
(2)先理由求根公式得到kx2+(3k+1)x+3=0(k≠0)的解為x1=
1
k
,x2=3,則二次函數(shù)y=kx2+(3k+1)x+3的圖象與x軸兩個(gè)交點(diǎn)的橫坐標(biāo)分別為
1
k
和3,然后根據(jù)整數(shù)的整除性可確定整數(shù)k的值.
解答:(1)證明:△=(3k+1)2-4k×3
=(3k-1)2,
∵(3k-1)2,≥0,
∴△≥0,
∴無(wú)論k取何值,方程總有兩個(gè)實(shí)數(shù)根;
(2)解:kx2+(3k+1)x+3=0(k≠0)
x=
-(3k+1)±(3k-1)
2k
,
x1=
1
k
,x2=3,
所以二次函數(shù)y=kx2+(3k+1)x+3的圖象與x軸兩個(gè)交點(diǎn)的橫坐標(biāo)分別為
1
k
和3,
根據(jù)題意得
1
k
為整數(shù),
所以整數(shù)k為±1.
點(diǎn)評(píng):本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=b2-4ac:當(dāng)△>0,方程有兩個(gè)不相等的實(shí)數(shù)根;當(dāng)△=0,方程有兩個(gè)相等的實(shí)數(shù)根;當(dāng)△<0,方程沒(méi)有實(shí)數(shù)根.也考查了拋物線與x軸的交點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知關(guān)于x的一元二次x2+(2k-3)x+k2=0的兩個(gè)實(shí)數(shù)根x1,x2且x1+x2=x1x2,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知關(guān)于x的一元二次2x2-(2m2-1)x-m-4=0有一個(gè)實(shí)數(shù)根為
32

(1)求m的值;
(2)求已知方程所有不同的可能根的平方和.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知關(guān)于x的一元二次x2-6x+k+1=0的兩個(gè)實(shí)數(shù)根x1,x2,
1
x1
+
1
x2
=1
,則k的值是( 。
A、8B、-7C、6D、5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:第23章《一元二次方程》中考題集(23):23.3 實(shí)踐與探索(解析版) 題型:解答題

已知關(guān)于x的一元二次2x2-(2m2-1)x-m-4=0有一個(gè)實(shí)數(shù)根為
(1)求m的值;
(2)求已知方程所有不同的可能根的平方和.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2007年全國(guó)中考數(shù)學(xué)試題匯編《一元二次方程》(04)(解析版) 題型:解答題

(2007•汕頭)已知關(guān)于x的一元二次2x2-(2m2-1)x-m-4=0有一個(gè)實(shí)數(shù)根為
(1)求m的值;
(2)求已知方程所有不同的可能根的平方和.

查看答案和解析>>

同步練習(xí)冊(cè)答案