9、如圖,已知∠DAB=∠CBA,則再添加條件
AD=BC或∠C=∠D或∠CAB=∠ABD
,可得到△ABC≌△BAD.
分析:△ABC和△BAD中,AB是公共邊,∠DAB=∠CBA;因此可添加AD=BC可用SSS判定△ABC≌△BAD;加∠BAC=∠ABD可用ASA判定△ABC≌△BAD;加∠C=∠D可用AAS判定△ABC≌△BAD.
解答:解:∵∠DAB=∠CBA,AB=AB;
∴當AD=BC或∠C=∠D或∠CAB=∠ABD時,△ABC≌△BAD.
故填AD=BC或∠C=∠D或∠CAB=∠ABD.
點評:本題考查三角形全等的判定方法;判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加時注意:AAA、SSA不能判定兩個三角形全等,不能添加,根據(jù)已知結(jié)合圖形及判定方法選擇條件是正確解答本題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

26、如圖,已知∠DAB+∠D=180°,AC平分∠DAB,且∠CAD=25°,∠B=95.
(1)求∠DCA的度數(shù);(2)求∠DCE的度數(shù);(3)求∠BCA的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知∠DAB=∠CAE,請你添加一個適當?shù)臈l件,使△ADE∽△ABC,你添加的條件是
∠D=∠B或∠AED=∠C或AD:AB=AE:AC或AD•AC=AB•AE
∠D=∠B或∠AED=∠C或AD:AB=AE:AC或AD•AC=AB•AE

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知∠DAB+∠ABC+∠BCE=360°.
(1)說明AD與CE的位置關系,并說明理由;
(2)求證:∠ABC=∠BAH+∠BCG.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

 如圖,已知∠DAB+∠CDA=180°,∠DCB=40°,則∠ABC=
140°
140°

查看答案和解析>>

同步練習冊答案