如圖,要設計一個等腰梯形的花壇,花壇上底120米,下底180米,上下底相距80米,在兩腰中點連線(虛線)處有一條橫向甬道,上下底之間有兩條縱向甬道,各甬道的寬度相等.設甬道的寬為x米.
(1)用含x的式子表示橫向甬道的面積;
(2)當三條甬道的面積是梯形面積的八分之一時,求甬道的寬;
(3)根據設計的要求,甬道的寬不能超過6米.如果修建甬道的總費用(萬元)與甬道的寬度成正比例關系,比例系數(shù)是5.7,花壇其余部分的綠化費用為每平方米0.02萬元,那么當甬道的寬度為多少米時,所建花壇的總費用最少?最少費用是多少萬元?

【答案】分析:(1)首先要根據題意表示出甬道的上底與下底的長,進而得出的函數(shù)關系式.
(2)根據題意得出甬道總面積為各甬道面積之和,即150x+160x-2x2=310x-2x2
(3)花壇總費用y=甬道總費用+綠化總費用:y=5.7x+(12000-S)×0.02,即可求出.
解答:解:(1)橫向甬道的面積為:x=150x(m2);

(2)橫向甬道的面積為:x=150x(m2);
甬道總面積為150x+160x-2x2=310x-2x2
依題意:310x-2x2=××80,
整理得:x2-155x+750=0,
x1=5,x2=150(不符合題意,舍去),
∴甬道的寬為5米;

(3)∵花壇上底120米,下底180米,上下底相距80米,
∴等腰梯形的面積為:(120+180)×80=12000,
∵甬道總面積為S=310x-2x2,
綠化總面積為12000-S,
花壇總費用y=甬道總費用+綠化總費用:
∴y=5.7x+(12000-S)×0.02,
=5.7x-0.02S+240,
=5.7x-0.02(310x-2x2)+240,
=0.04x2-0.5x+240,
當x=-=6.25時,y的值最。
∵根據設計的要求,甬道的寬不能超過6米,
∴當x=6米時,總費用最少.
即最少費用為:0.04×62-3+240=238.44萬元.
點評:此題主要考查了屬于幾何型二次函數(shù)的應用題,二次函數(shù)的應用題中考的必考的知識點,往往以壓軸題的身份出現(xiàn),解決這類問題的關鍵是函數(shù)思想的確立、函數(shù)模型的建立.考查的能力有轉化能力、閱讀理解能力;考查的數(shù)學思想主要是數(shù)學建模思想、數(shù)形結合思想.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

25、如圖,要設計一個等腰梯形的花壇,花壇上底長120米,下底長180米,上下底相距80米,在兩腰中點連線(虛線)處有一條橫向甬道,上下底之間有兩條縱向甬道,各甬道的寬度相等.設甬道的寬為x米.
(1)用含x的式子表示橫向甬道的面積;
(2)根據設計的要求,甬道的寬不能超過6米.如果修建甬道的總費用(萬元)與甬道的寬度成正比例關系,比例系數(shù)是5.7,花壇其余部分的綠化費用為每平方米0.02萬元,那么當甬道的寬度為多少米時,所建花壇的總費用為239萬元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,要設計一個等腰梯形的花壇,花壇上底長240m,下底長360m,上下底相距80m,在兩腰中精英家教網點連線(虛線)處有一條橫向梯形通道,上下底之間有兩條縱向矩形通道,橫、縱通道的寬度分別為x(m)、2x(m).
(1)當三條通道的面積是梯形面積的
18
時,求每條縱向通道的寬;
(2)根據設計的要求,橫向通道的寬不能超過6m.如果修建通道的總費用為11.4x萬元,花壇其余部分的綠化費用為每平方米0.02萬元,那么當橫向通道的寬度為多少m時,所建花壇的總費用最少?最少費用是多少萬元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•廣西模擬)如圖,要設計一個等腰梯形的花壇,花壇上底120米,下底180米,上下底相距80米,在兩腰中點連線(虛線)處有一條橫向甬道,上下底之間有兩條縱向甬道,各甬道的寬度相等.設甬道的寬為x米.
(1)用含x的式子表示橫向甬道的面積;
(2)當三條甬道的面積是梯形面積的八分之一時,求甬道的寬;
(3)根據設計的要求,甬道的寬不能超過6米.如果修建甬道的總費用(萬元)與甬道的寬度成正比例關系,比例系數(shù)是5.7,花壇其余部分的綠化費用為每平方米0.02萬元,那么當甬道的寬度為多少米時,所建花壇的總費用最少?最少費用是多少萬元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2011•錦江區(qū)模擬)如圖,要設計一個等腰梯形的花壇,花壇上底長120米,下底長180米,上下底相距80米,在兩腰中點連線(虛線)處有一條橫向通道,上下底之間有兩條縱向通道,各通道的寬度相等.設通道的寬為x米.
(1)用含x的式子表示橫向通道的面積;
(2)當三條通道的面積是梯形面積的八分之一時,求通道的寬;
(3)根據設計的要求,通道的寬不能超過8米.如果修建通道的總費用(萬元)與通道的寬度成正比例關系,比例系數(shù)是5.5,花壇其余部分的綠化費用為每平方米0.02萬元,那么當通道的寬度為多少米時,所建花壇的總費用最少?最少費用是多少萬元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,要設計一個等腰梯形的花壇,花壇上底長120米,下底長180米,上下底相距80米,在兩腰中點連線(虛線)處有一條橫向甬道,上下底之間有兩條縱向甬道,各甬道的寬度相等.要使花壇栽花部分(圖示陰影部分)的面積達到10000平方米,求甬道的寬度時,設甬道的寬為x米,可列方程得:
310x-2x2=10000
310x-2x2=10000

查看答案和解析>>

同步練習冊答案