【題目】如圖,學校旗桿的下方有一塊圓形草坪,草坪的外面圍著圓環(huán)水池,草坪和水池的外邊緣是兩個同心圓,旗桿在圓心O的位置且與地面垂直.

1)若草坪的面積與圓環(huán)水池的面積之比為14,求兩個同心圓的半徑之比.

2)如圖,若水池外面通往草坪有一座10米長的小橋BC,小橋所在的直線經(jīng)過圓心O,上午8:00時太陽光線與地面成30°角,旗桿頂端的影子恰好落在水池的外緣;上午9:00時太陽光線與地面成45°角,旗桿頂端的影子恰好落在草坪的外緣,求旗桿的高OA.

【答案】(1);(2)旗桿的高OA長為()米.

【解析】

1)根據(jù)面積比與半徑比的關(guān)系求解即;

2)設(shè)OA=x,根據(jù)解直角三角形表示出OBOC,根據(jù)其數(shù)量關(guān)系列方程解答即可.

1)由題意得

,

即兩個同心圓的半徑之比為.

2)設(shè)OA=x,由∠ABO=45°,∠ACO=30°知,

,

∵,OC-OB=BC=10

,解得.

∴旗桿的高OA長為()米.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】中,,,以點為圓心、為半徑作圓,設(shè)點為⊙上一點,線段繞著點順時針旋轉(zhuǎn),得到線段,連接、

1)在圖中,補全圖形,并證明 .

2)連接,若與⊙相切,則的度數(shù)為 . 

3)連接,則的最小值為 ;的最大值為 .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,小明在水平面E處,測得某建筑物AB的頂端A的仰角為42°,向正前方向走37米到達點D處,再往斜坡CD上走30米到達點C處,測得建筑物AB的頂端A的仰角為63.5°,已知斜坡CD的坡度為i10.75,建筑物AB垂直于平臺BC,平臺BC與水平面DE平行,點A、B、CD、E均在同一平面內(nèi),則建筑物AB的高度約為( 。ň_到0.1米,參考數(shù)據(jù):sin42°≈0.67,cos42°≈0.74,tan42°≈0.90,sin63.5°≈0.90,cos63.5°≈0.45,tan63.5°≈2.0

A.42.4B.46.4C.48.5D.50.8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,都是等腰直角三角形,,的頂點的斜邊的中點重合,將繞點旋轉(zhuǎn),旋轉(zhuǎn)過程中,線段與線段相交于點,射線與線段相交于點,與射線相交于點.

1)求證:;

2)求證:平分;

3)當,,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲乙兩名同學做摸球游戲,他們把三個分別標有1,2,3的大小和形狀完全相同的小球放在一個不透明的口袋中.

1)求從袋中隨機摸出一球,標號是1的概率;

2)從袋中隨機摸出一球后放回,搖勻后再隨機摸出一球,若兩次摸出的球的標號之和為偶數(shù)時,則甲勝;若兩次摸出的球的標號之和為奇數(shù)時,則乙勝;試分析這個游戲是否公平?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】用配方法解下列方程,其中應(yīng)在方程左右兩邊同時加上4的是( 。

A. x22x5 B. x2+4x5 C. 2x24x5 D. 4x2+4x5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)的圖象與x軸交于A(﹣3,0)和B1,0)兩點,交y軸于點C0,3),點C,D是二次函數(shù)圖象上的一對對稱點,一次函數(shù)的圖象過點B,D,交y軸為E

1)求二次函數(shù)的解析式;

2)求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有兩把不同的鎖和四把不同的鑰匙,其中兩把鑰匙恰好分別能打開這兩把鎖,其余的鑰匙不能打開這兩把鎖.現(xiàn)在任意取出一把鑰匙去開任意一把鎖.

1)請用列表或畫樹狀圖的方法表示出上述試驗所有可能結(jié)果;

2)求一次打開鎖的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某球室有三種品牌的個乒乓球,價格是7,8,9(單位:元)三種.從中隨機拿出一個球,已知(一次拿到元球)

1)求這個球價格的眾數(shù);

2)若甲組已拿走一個元球訓練,乙組準備從剩余個球中隨機拿一個訓練.

所剩的個球價格的中位數(shù)與原來個球價格的中位數(shù)是否相同?并簡要說明理由;

乙組先隨機拿出一個球后放回,之后又隨機拿一個,用列表法(如圖)求乙組兩次都拿到8元球的概率.

又拿

先拿

查看答案和解析>>

同步練習冊答案