【題目】如圖,平面直角坐標(biāo)系中,A(0,a),B(b,0)且a、b滿(mǎn)足|a+2b﹣6|+|a﹣2b+2|=0.E為線(xiàn)段AB上一動(dòng)點(diǎn),∠BED=∠OAB,BD⊥EC,垂足在EC的延長(zhǎng)線(xiàn)上,試求:
(1)判斷△OAB的形狀,并說(shuō)明理由;
(2)如圖1,當(dāng)點(diǎn)E與點(diǎn)A重合時(shí),探究線(xiàn)段AC與BD的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)如圖2,當(dāng)點(diǎn)E在線(xiàn)段AB(不與A、B重合)上運(yùn)動(dòng)時(shí),試探究線(xiàn)段EC與BD的數(shù)量關(guān)系,證明你的結(jié)論.
【答案】(1)△OAB是等腰直角三角形;(2)AC=2BD,理由見(jiàn)解析;(3)EC=2BD,證明見(jiàn)解析
【解析】
(1)根據(jù)非負(fù)性得出a,b的值進(jìn)而解答即可.
(2)延長(zhǎng)BD與y軸交于點(diǎn)F,證明△ABD≌△AFD,可得BD=DF,再證明△AOC≌△BOF,可得AC=BF,即可得出結(jié)論;
(3)過(guò)點(diǎn)E作EN⊥x軸于點(diǎn)K,交BD的延長(zhǎng)線(xiàn)于點(diǎn)N,證明△EBD≌△END,可得BD=DN,再證明△EKC≌△BKN,可得EC=BN,則結(jié)論得證.
解:(1)∵|a+2b﹣6|+|a﹣2b+2|=0,|a+2b﹣6|≥0,|a﹣2b+2|≥0
∴,
解得,
∴OA=OB,
又∵∠AOB=90°,
∴△OAB是等腰直角三角形.
(2)AC=2BD,理由如下:如圖1,延長(zhǎng)BD與y軸交于點(diǎn)F,
∵,
∴∠BAD=∠FAD
又∵BD⊥EC,∠ADB=∠ADF,
在△ADB和△ADF中,
,
∴△ABD≌△AFD(ASA),
∴BD=DF,
∵
∴
在△AOC和△BOF中
∴△AOC≌△BOF(ASA),
∴AC=BF,
∴AC=2BD;
(3)EC=2BD,證明如下:
如圖2,過(guò)點(diǎn)E作EN⊥x軸于點(diǎn)K,交BD的延長(zhǎng)線(xiàn)于點(diǎn)N,
∴EN∥y,
∴∠NEB=∠OAB,
∵∠BED=∠OAB,
∴∠NED=∠BED,
在△EBD和△END中,
,
∴△EBD≌△END(ASA),
∴BD=DN,
∴
在△EKC和△BKN中,
∴△EKC≌△BKN(ASA),
∴EC=BN,
∴EC=2BD.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等邊三角形ABC中,點(diǎn)D在線(xiàn)段AB上,點(diǎn)E在CD的延長(zhǎng)線(xiàn)上,連接AE,AE=AC,AF平分∠EAB,交CE于點(diǎn)F,連接BF.
(1)求證:EF=BF;
(2)猜想∠AFC的度數(shù),并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,已知拋物線(xiàn)y=﹣x2+x+與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,點(diǎn)D是點(diǎn)C關(guān)于拋物線(xiàn)對(duì)稱(chēng)軸的對(duì)稱(chēng)點(diǎn),連接CD,過(guò)點(diǎn)D作DH⊥x軸于點(diǎn)H,過(guò)點(diǎn)A作AE⊥AC交DH的延長(zhǎng)線(xiàn)于點(diǎn)E.
(1)求線(xiàn)段DE的長(zhǎng)度;
(2)如圖2,試在線(xiàn)段AE上找一點(diǎn)F,在線(xiàn)段DE上找一點(diǎn)P,且點(diǎn)M為直線(xiàn)PF上方拋物線(xiàn)上的一點(diǎn),求當(dāng)△CPF的周長(zhǎng)最小時(shí),△MPF面積的最大值是多少;
(3)在(2)問(wèn)的條件下,將得到的△CFP沿直線(xiàn)AE平移得到△C′F′P′,將△C′F′P′沿C′P′翻折得到△C′P′F″,記在平移過(guò)稱(chēng)中,直線(xiàn)F′P′與x軸交于點(diǎn)K,則是否存在這樣的點(diǎn)K,使得△F′F″K為等腰三角形?若存在求出OK的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A、B的坐標(biāo)分別為A(1,0),B(3,0),探究:拋物線(xiàn)(m為常數(shù))交x軸于點(diǎn)M、N兩點(diǎn).
(1)當(dāng)m=2時(shí).
①求出拋物線(xiàn)的頂點(diǎn)坐標(biāo)及線(xiàn)段MN的長(zhǎng);
②拋物線(xiàn)上有一點(diǎn)P,使,求出點(diǎn)P的坐標(biāo);
(2)對(duì)于拋物線(xiàn)(m為常數(shù)).
①線(xiàn)段MN的長(zhǎng)是否發(fā)生變化,請(qǐng)說(shuō)明理由.
②若該拋物線(xiàn)與線(xiàn)段AB有公共點(diǎn),請(qǐng)直接寫(xiě)出m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△ABC的兩直角邊AC邊長(zhǎng)為4,BC邊長(zhǎng)為3,它的內(nèi)切圓為⊙O,⊙O與邊AB、BC、AC分別相切于點(diǎn)D、E、F,延長(zhǎng)CO交斜邊AB于點(diǎn)G.
(1)求⊙O的半徑長(zhǎng);
(2)求線(xiàn)段DG的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本題滿(mǎn)分12分)拋物線(xiàn)y=-x2+(m-1)x+m與y軸交于(0,3)點(diǎn).
(1)求出m的值并畫(huà)出這條拋物線(xiàn);
(2)求它與x軸的交點(diǎn)和拋物線(xiàn)頂點(diǎn)的坐標(biāo);
(3)x取什么值時(shí),拋物線(xiàn)在x軸上方?
(4)x取什么值時(shí),y的值隨x值的增大而減?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在直角三角形ABC中,∠BAC=90°,AB=AC,D為BC的中點(diǎn),E為AC上一點(diǎn),點(diǎn)G在BE上,連接DG并延長(zhǎng)交AE于F,若∠FGE=45°.
(1)求證:BDBC=BGBE;
(2)求證:AG⊥BE;
(3)若E為AC的中點(diǎn),求EF:FD的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線(xiàn)y=x+8與x軸,y軸分別交于點(diǎn)A,B,直線(xiàn)y=x+1與直線(xiàn)AB交于點(diǎn)C,與y軸交于點(diǎn)D.
(1)求點(diǎn)C的坐標(biāo).
(2)求△BDC的面積.
(3)如圖,P是y軸正半軸上的一點(diǎn),Q是直線(xiàn)AB上的一點(diǎn),連接PQ.
①若PQ∥x軸,且點(diǎn)A關(guān)于直線(xiàn)PQ的對(duì)稱(chēng)點(diǎn)A′恰好落在直線(xiàn)CD上,求PQ的長(zhǎng).
②若△BDC與△BPQ全等(點(diǎn)Q不與點(diǎn)C重合),請(qǐng)寫(xiě)出所有滿(mǎn)足要求的點(diǎn)Q坐標(biāo)(直接寫(xiě)出答案).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,ABCD的對(duì)角線(xiàn)AC、BD交于點(diǎn)O,AE平分∠BAD交BC于點(diǎn)E,且∠ADC=60°,AB=BC,連接OE.下列結(jié)論:①∠CAD=30°;②SABCD=ABAC;③OB=AB;④OE=BC,成立的個(gè)數(shù)有( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com