【題目】如圖,在四邊形ABCD中,BC=CD,∠C=2∠BAD.O是四邊形ABCD內(nèi)一點,且OA=OB=OD.求證:

(1)∠BOD=∠C;

(2)四邊形OBCD是菱形.

【答案】證明見解析

【解析】

(1)延長AOE,利用等邊對等角和角之間關(guān)系解答即可;

(2)連接OC,根據(jù)全等三角形的判定和性質(zhì)以及菱形的判定解答即可.

(1)延長OA到E,如圖所示:

∵OA=OB,

∴∠ABO=∠BAO,

∠BOE=∠ABO+∠BAO,

∴∠BOE=2∠BAO,

同理∠DOE=2∠DAO,

∴∠BOE+∠DOE=2∠BAO+2∠DAO=2(∠BAO+∠DAO)

∠BOD=2∠BAD,

∠C=2∠BAD,

∴∠BOD=∠C;

(2)連接OC,

∵OB=OD,CB=CD,OC=OC,

∴△OBC≌△ODC,

∴∠BOC=∠DOC,∠BCO=∠DCO,

∵∠BOD=∠BOC+∠DOC,∠BCD=∠BCO+∠DCO,

∴∠BOC=∠BOD,∠BCO=∠BCD,

∠BOD=∠BCD,

∴∠BOC=∠BCO,

∴BO=BC,

又OB=OD,BC=CD,

∴OB=BC=CD=DO,

四邊形OBCD是菱形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,AB為半圓O的直徑,半徑的長為4cm,點C為半圓上一動點,過點C作CEAB,垂足為點E,點D為弧AC的中點,連接DE,如果DE=2OE,求線段AE的長.

小何根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,將此問題轉(zhuǎn)化為函數(shù)問題解決.

小華假設(shè)AE的長度為xcm,線段DE的長度為ycm.

(當(dāng)點C與點A重合時,AE的長度為0cm),對函數(shù)y隨自變量x的變化而變化的規(guī)律進(jìn)行探究.

下面是小何的探究過程,請補(bǔ)充完整:(說明:相關(guān)數(shù)據(jù)保留一位小數(shù)).

(1)通過取點、畫圖、測量,得到了x與y的幾組值,如下表:

x/cm

0

1

2

3

4

5

6

7

8

y/cm

0

1.6

2.5

3.3

4.0

4.7

   

5.8

5.7

當(dāng)x=6cm時,請你在圖中幫助小何完成作圖,并使用刻度尺度量此時線段DE的長度,填寫在表格空白處:

(2)在圖2中建立平面直角坐標(biāo)系,描出補(bǔ)全后的表中各組對應(yīng)值為坐標(biāo)的點,畫出該函數(shù)的圖象

(3)結(jié)合畫出的函數(shù)圖象解決問題,當(dāng)DE=2OE時,AE的長度約為   cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABOC中,∠ABO=120°,它的一個頂點C在反比例函數(shù)y=的圖象上,若將菱形向下平移2個單位,點A恰好落在函數(shù)圖象上,則該反比函數(shù)的表達(dá)式為( 。

A. y=﹣ B. y=﹣ C. y=﹣ D. y=-

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,兩個含有30°角的完全相同的三角板ABCDEF沿直線l滑動,下列說法錯誤的是(  )

A. 四邊形ACDF是平行四邊形 B. 當(dāng)點EBC中點時,四邊形ACDF是矩形

C. 當(dāng)點B與點E重合時,四邊形ACDF是菱形 D. 四邊形ACDF不可能是正方形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,AB=3,點E,F(xiàn)分別在CD,AD上,CE=DF,BE,CF相交于點G.若圖中陰影部分的面積與正方形ABCD的面積之比為2:3,則BCG的周長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,AB<AD,D=30°,CD=4,以AB為直徑的⊙OBC于點E,則陰影部分的面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正六邊形ABCDEF中,對角線AEBF相交于點M,BDCE相交于點N.

(1)求證:AE=FB;

(2)在不添加任何輔助線的情況下,請直接寫出所有與△ABM全等的三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】每天鍛煉一小時,健康生活一輩子.為了選拔陽光大課間領(lǐng)操員,學(xué)校組織初中三個年級推選出來的15名領(lǐng)操員進(jìn)行比賽,成績?nèi)缦卤恚?/span>

成績/

7

8

9

10

人數(shù)/

2

5

4

4

(1)這組數(shù)據(jù)的眾數(shù)是   ,中位數(shù)是   

(2)已知獲得10分的選手中,七、八、九年級分別有1人、2人、1人,學(xué)校準(zhǔn)備從中隨機(jī)抽取兩人領(lǐng)操,求恰好抽到八年級兩名領(lǐng)操員的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)a0)圖象的頂點為D,其圖象與x軸的交點A、B的橫坐標(biāo)分別為﹣13,則下列結(jié)論正確的是( )

A. 2a﹣b=0

B. a+b+c0

C. 3a﹣c=0

D. 當(dāng)a=時,△ABD是等腰直角三角形

查看答案和解析>>

同步練習(xí)冊答案