(1)證明:∵正方形ABCD,
∴AB=BC,
∵∠ABF=∠CBE,BF=BE,
∴△ABF≌△CBE(SAS).
(2)解:△BEF的形狀是等腰直角三角形,
證明:∵△ABF≌△CBE,
∴BF=BE,
∵正方形ABCD,
∴∠ABC=90°,
即∠ABF+∠FBC=90°,
∵∠ABF=∠CBE,
∴∠FBC+∠CBE=90°,
即∠FBE=90°,
∴△BEF是等腰直角三角形.
(3)解:設CF=a,BF=2a,
∵△BEF是等腰直角三角形,
∴BE=BF,
∴∠BFE=∠BEF=45°,
∵∠BFC=135°,
∴∠CFE=90°,
由勾股定理得:CE=
=3a,
∴cos∠FCE=
=
=
.
答:cos∠FCE的值是
.
分析:(1)根據(jù)正方形性質(zhì)推出AB=BC,根據(jù)SAS證出即可;
(2)根據(jù)全等三角形性質(zhì)推出BE=BF,根據(jù)正方形性質(zhì)推出∠ABF+∠FBC=90°,證∠FBC+∠CBE=90°即可;
(3)根據(jù)等腰直角三角形性質(zhì)推出∠BFE=45°,推出∠CFE=90°,設CF=a,BF=2a,求出CE=3a,根據(jù)銳角三角函數(shù)求出即可.
點評:本題主要考查對銳角三角函數(shù)的定義,正方形的性質(zhì),全等三角形的性質(zhì)和判定,等腰直角三角形的性質(zhì)和判定,勾股定理等知識點的理解和掌握,綜合運用這些性質(zhì)進行推理是解此題的關鍵.