如圖,二次函數(shù)的圖象與x軸相交于點(diǎn)A(-3,0)、B(-1,0),與y軸相交于點(diǎn)C(0,3),點(diǎn)P是該圖象上的動(dòng)點(diǎn);一次函數(shù)y=kx-4k(k≠0)的圖象過點(diǎn)P交x軸于點(diǎn)Q.
(1)求該二次函數(shù)的解析式;
(2)當(dāng)點(diǎn)P的坐標(biāo)為(-4,m)時(shí),求證:∠OPC=∠AQC;
(3)點(diǎn)M,N分別在線段AQ、CQ上,點(diǎn)M以每秒3個(gè)單位長(zhǎng)度的速度從點(diǎn)A向點(diǎn)Q運(yùn)動(dòng),同時(shí),點(diǎn)N以每秒1個(gè)單位長(zhǎng)度的速度從點(diǎn)C向點(diǎn)Q運(yùn)動(dòng),當(dāng)點(diǎn)M,N中有一點(diǎn)到達(dá)Q點(diǎn)時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.連接AN,當(dāng)△AMN的面積最大時(shí),
①求t的值;
②直線PQ能否垂直平分線段MN?若能,請(qǐng)求出此時(shí)點(diǎn)P的坐標(biāo);若不能,請(qǐng)說明你的理由.

(1)解:設(shè)拋物線的解析式為:y=a(x+3)(x+1),
∵拋物線經(jīng)過點(diǎn)C(0,3),
∴3=a×3×1,解得a=1.
∴拋物線的解析式為:y=(x+3)(x+1)=x2+4x+3.

(2)證明:在拋物線解析式y(tǒng)=x2+4x+3中,當(dāng)x=-4時(shí),y=3,∴P(-4,3).
∵P(-4,3),C(0,3),
∴PC=4,PC∥x軸.
∵一次函數(shù)y=kx-4k(k≠0)的圖象交x軸于點(diǎn)Q,當(dāng)y=0時(shí),x=4,
∴Q(4,0),OQ=4.
∴PC=OQ,又∵PC∥x軸,
∴四邊形POQC是平行四邊形,
∴∠OPC=∠AQC.

(3)解:①在Rt△COQ中,OC=3,OQ=4,由勾股定理得:CQ=5.
如答圖1所示,過點(diǎn)N作ND⊥x軸于點(diǎn)D,則ND∥OC,

∴△QND∽△QCO,
,即,解得:ND=3-t.
設(shè)S=S△AMN,則:
S=AM•ND=•3t•(3-t)=-(t-2+
又∵AQ=7,∴點(diǎn)M到達(dá)終點(diǎn)的時(shí)間為t=,
∴S=-(t-2+(0<t≤).
∵-<0,,且x<時(shí),y隨x的增大而增大,
∴當(dāng)t=時(shí),△AMN的面積最大.
②假設(shè)直線PQ能夠垂直平分線段MN,則有QM=QN,且PQ⊥MN,PQ平分∠AQC.
由QM=QN,得:7-3t=5-t,解得t=1.
此時(shí)點(diǎn)M與點(diǎn)O重合,如答圖2所示:

設(shè)PQ與OC交于點(diǎn)E,由(2)可知,四邊形POQC是平行四邊形,
∴OE=CE.
∵點(diǎn)E到CQ的距離小于CE,
∴點(diǎn)E到CQ的距離小于OE,而OE⊥x軸,
∴PQ不是∠AQC的平分線,這與假設(shè)矛盾.
∴直線PQ不能垂直平分線段MN.
分析:(1)利用交點(diǎn)式求出拋物線的解析式;
(2)證明四邊形POQC是平行四邊形,則結(jié)論得證;
(3)①求出△AMN面積的表達(dá)式,利用二次函數(shù)的性質(zhì),求出△AMN面積最大時(shí)t的值.注意:由于自變量取值范圍的限制,二次函數(shù)并不是在對(duì)稱軸處取得最大值;
②由于直線PQ上的點(diǎn)到∠AQC兩邊的距離不相等,則直線PQ不能平分∠AQC,所以直線PQ不能垂直平分線段MN.
點(diǎn)評(píng):本題是二次函數(shù)綜合題型,考查了二次函數(shù)的圖象與性質(zhì)、待定系數(shù)法、一次函數(shù)、相似三角形、平行四邊形、角平分線的性質(zhì)、二次函數(shù)的最值等知識(shí)點(diǎn).試題難度不大,需要注意的是(3)①問中,需要注意在自變量取值區(qū)間上求最大值,而不能機(jī)械地套用公式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知在直角坐標(biāo)平面內(nèi),點(diǎn)A的坐標(biāo)為(3,0),第一象限內(nèi)的點(diǎn)P在直線y=2x上,∠PAO=45度.精英家教網(wǎng)
(1)求點(diǎn)P的坐標(biāo);
(2)如果二次函數(shù)的圖象經(jīng)過P、O、A三點(diǎn),求這個(gè)二次函數(shù)的解析式,并寫出它的圖象的頂點(diǎn)坐標(biāo)M;
(3)如果將第(2)小題中的二次函數(shù)的圖象向上或向下平移,使它的頂點(diǎn)落在直線y=2x上的點(diǎn)Q處,求△APM與△APQ的面積之比.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,已知在直角坐標(biāo)平面內(nèi),點(diǎn)A的坐標(biāo)為(3,0),第一象限內(nèi)的點(diǎn)P在直線y=2x上,∠PAO=45度.
(1)求點(diǎn)P的坐標(biāo);
(2)如果二次函數(shù)的圖象經(jīng)過P、O、A三點(diǎn),求這個(gè)二次函數(shù)的解析式,并寫出它的圖象的頂點(diǎn)坐標(biāo)M;
(3)如果將第(2)小題中的二次函數(shù)的圖象向上或向下平移,使它的頂點(diǎn)落在直線y=2x上的點(diǎn)Q處,求△APM與△APQ的面積之比.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012年北京市華夏女子中學(xué)九年級(jí)第一學(xué)期期中考試數(shù)學(xué)卷 題型:解答題

如圖是二次函數(shù)的圖象,其頂點(diǎn)坐標(biāo)為M(1,-4).

【小題1】(1)求出圖象與軸的交點(diǎn)A,B的坐標(biāo);
【小題2】(2)在二次函數(shù)的圖象上是否存在點(diǎn)P,使,若存在,求出P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由;
【小題3】(3)將二次函數(shù)的圖象在軸下方的部分沿軸翻折,圖象的其余部分保持不變,得到一個(gè)新的圖象,請(qǐng)你結(jié)合這個(gè)新的圖象回答:當(dāng)直線與此圖象有兩個(gè)公共點(diǎn)時(shí),的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年上海市中考數(shù)學(xué)模擬試卷(二)(解析版) 題型:解答題

如圖,已知在直角坐標(biāo)平面內(nèi),點(diǎn)A的坐標(biāo)為(3,0),第一象限內(nèi)的點(diǎn)P在直線y=2x上,∠PAO=45度.
(1)求點(diǎn)P的坐標(biāo);
(2)如果二次函數(shù)的圖象經(jīng)過P、O、A三點(diǎn),求這個(gè)二次函數(shù)的解析式,并寫出它的圖象的頂點(diǎn)坐標(biāo)M;
(3)如果將第(2)小題中的二次函數(shù)的圖象向上或向下平移,使它的頂點(diǎn)落在直線y=2x上的點(diǎn)Q處,求△APM與△APQ的面積之比.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年上海市浦東新區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

如圖,已知在直角坐標(biāo)平面內(nèi),點(diǎn)A的坐標(biāo)為(3,0),第一象限內(nèi)的點(diǎn)P在直線y=2x上,∠PAO=45度.
(1)求點(diǎn)P的坐標(biāo);
(2)如果二次函數(shù)的圖象經(jīng)過P、O、A三點(diǎn),求這個(gè)二次函數(shù)的解析式,并寫出它的圖象的頂點(diǎn)坐標(biāo)M;
(3)如果將第(2)小題中的二次函數(shù)的圖象向上或向下平移,使它的頂點(diǎn)落在直線y=2x上的點(diǎn)Q處,求△APM與△APQ的面積之比.

查看答案和解析>>

同步練習(xí)冊(cè)答案