【題目】體育課上,20人一組進行足球比賽,每人射點球5次,已知某一組的進球總數(shù)為49個,進球情況記錄如下表,其中進2個球的有x人,進3個球的有y人,若(x, y)恰好是兩條直線的交點坐標,則這兩條直線的解析式是( 。

A. y=x+9 B. y=-x+9

C. y=-x+9 D. y=x+9

【答案】C

【解析】

根據(jù)一共20個人,進球49個列出關于x、y的方程即可得到答案.

根據(jù)進球總數(shù)為49個得分:2x+3y=49﹣5﹣3×4﹣2×5=22,即

∵20人一組進行足球比賽,

∴1+5+x+y+3+2=20,

整理得:y=﹣x+9.

所以,若(x, y)恰好是兩條直線的交點坐標,則這兩條直線的解析式是y=-x+9.

故選:C

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,“中國海監(jiān)50”正在南海海域A處巡邏,島礁B上的中國海軍發(fā)現(xiàn)點A在點B的正西方向上,島礁C上的中國海軍發(fā)現(xiàn)點A在點C的南偏東30°方向上,已知點C在點B的北偏西60°方向上,且B、C兩地相距120海里.
(1)求出此時點A到島礁C的距離;
(2)若“中海監(jiān)50”從A處沿AC方向向島礁C駛去,當?shù)竭_點A′時,測得點B在A′的南偏東75°的方向上,求此時“中國海監(jiān)50”的航行距離.(注:結果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知∠AOB=120°,∠COD=60°,OE平分∠BOC

(1)如圖.當COD在∠AOB的內部時

AOC=39°40′,求DOE的度數(shù);

AOC=α,求DOE的度數(shù)(用含α的代數(shù)式表示),

(2)如圖,當COD在AOB的外部時,

請直接寫出AOC與DOE的度數(shù)之間的關系;

AOC內部有一條射線OF,滿足∠AOC+2∠BOE=4∠AOF,寫出AOF與DOE的度數(shù)之間的關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了進行資源的再利用,學校準備針對庫存的桌椅進行維修,現(xiàn)有甲、乙兩木工組,甲每天修桌凳14 套,乙每天比甲多7套,甲單獨修完這些桌凳比乙單獨修完多用20天.學校每天付甲組80元修理費,付乙組120元修理費.

(1)請問學校庫存多少套桌凳?

(2)在修理過程中,學校要派一名工人進行質量監(jiān)督,學校負擔他每天10元生活補助費,現(xiàn)有三種修理方案:①由甲單獨修理;②由乙單獨修理;③甲、乙合作同時修理.你選哪種方案,為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在線段AB的同側作射線AM和BN,若MAB與NBA的平分線分別交射線BN,AM于點E,F(xiàn),AE和BF交于點P.如圖,點點同學發(fā)現(xiàn)當射線AM,BN交于點C;且ACB=60°時,有以下兩個結論:

①∠APB=120°;AF+BE=AB.

那么,當AMBN時:

(1)點點發(fā)現(xiàn)的結論還成立嗎?若成立,請給予證明;若不成立,請求出APB的度數(shù),寫出AF,BE,AB長度之間的等量關系,并給予證明;

(2)設點Q為線段AE上一點,QB=5,若AF+BE=16,四邊形ABEF的面積為32,求AQ的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=ax2﹣bx﹣2(a≠0)的圖象的頂點在第四象限,且過點(﹣1,0),當a﹣b為整數(shù)時,ab的值為( 。
A.或1
B.或1
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一般情況下不成立,但有些數(shù)可以使得它成立,例如: .我們稱使得成立的一對數(shù), 為“相伴數(shù)對”,記為

(1)若是“相伴數(shù)對”,求的值;

(2)寫出一個“相伴數(shù)對” ,其中;

(3)若是“相伴數(shù)對”,求代數(shù)式的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點O為坐標原點,直線l與拋物線y=mx2+nx相交于A(1,3 ),B(4,0)兩點.
(1)求出拋物線的解析式;
(2)在坐標軸上是否存在點D,使得△ABD是以線段AB為斜邊的直角三角形?若存在,求出點D的坐標;若不存在,說明理由;
(3)點P是線段AB上一動點,(點P不與點A、B重合),過點P作PM∥OA,交第一象限內的拋物線于點M,過點M作MC⊥x軸于點C,交AB于點N,若△BCN、△PMN的面積SBCN、SPMN滿足SBCN=2SPMN , 求出 的值,并求出此時點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某一公路的道路維修工程,準備從甲、乙兩個工程隊選一個隊單獨完成.根據(jù)兩隊每天的工程費用和每天完成的工程量可知,若由兩隊合做此項維修工程,6天可以完成,共需工程費用385200元,若單獨完成此項維修工程,甲隊比乙隊少用5天,每天的工程費用甲隊比乙隊多4000元,從節(jié)省資金的角度考慮,應該選擇哪個工程隊?

查看答案和解析>>

同步練習冊答案