(2004•天津)如圖,已知PAB是⊙O的割線,AB為⊙O的直徑,PC為⊙O的切線,C為切點,BD⊥PC于點D,交⊙O于點E,PA=AO=OB=1.
(Ⅰ)求∠P的度數(shù);
(Ⅱ)求DE的長.

【答案】分析:(1)連接OC,可構造出直角三角形,利用銳角三角函數(shù)的定義即可求出∠P的值;
(2)利用△POC∽△OBD,可求出CD,BD的長,再利用切割線定理即可解答.
解答:解:(1)連接OC
∵OC⊥PD
∴OC=OA=1
在Rt△OPC中
OC=1,OP=2
∴sin∠P==
∴∠P=30°;

(2)在Rt△POC中
OP=2,OC=1
∴PC===
∵OC⊥PD,BD⊥PC
∴△POC∽△PBD
==
==
解得PD=,BD=
∴CD=PD-PC=-=
∵CD2=DE•BD
∴(2=DE•
解得DE=
點評:本題考查的是直角三角形的性質(zhì),銳角三角函數(shù)的定義及切割線定理.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2004年全國中考數(shù)學試題匯編《圖形的相似》(02)(解析版) 題型:選擇題

(2004•天津)如圖,已知等腰△ABC中,頂角∠A=36°,BD為∠ABC的平分線,則的值等于( )

A.
B.
C.1
D.

查看答案和解析>>

科目:初中數(shù)學 來源:2004年全國中考數(shù)學試題匯編《四邊形》(04)(解析版) 題型:填空題

(2004•天津)如圖等腰梯形ABCD中,對角線AC,BD相交于點O,那么圖中的全等三角形最多有    對.

查看答案和解析>>

科目:初中數(shù)學 來源:2004年天津市中考數(shù)學試卷(解析版) 題型:填空題

(2004•天津)如圖等腰梯形ABCD中,對角線AC,BD相交于點O,那么圖中的全等三角形最多有    對.

查看答案和解析>>

科目:初中數(shù)學 來源:2004年天津市中考數(shù)學試卷(解析版) 題型:選擇題

(2004•天津)如圖,已知等腰△ABC中,頂角∠A=36°,BD為∠ABC的平分線,則的值等于( )

A.
B.
C.1
D.

查看答案和解析>>

科目:初中數(shù)學 來源:2004年天津市中考數(shù)學試卷(解析版) 題型:選擇題

(2004•天津)如圖⊙O的兩條弦AB、CD相交于點E,AC與DB的延長線交于點P,下列結論中成立的是( )

A.CE•CD=BE•BA
B.CE•AE=BE•DE
C.PC•CA=PB•BD
D.PC•PA=PB•PD

查看答案和解析>>

同步練習冊答案
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻锝夊箣閿濆憛鎾绘煕閵堝懎顏柡灞诲€濆畷顐﹀Ψ閿旇姤鐦庡┑鐐差嚟婵敻鎳濇ィ鍐ㄧ厴闁瑰鍋涚粻鐘绘⒑缁嬪尅鏀绘い銊ユ楠炲牓濡歌閸嬫捇妫冨☉娆忔殘閻庤娲栧鍫曞箞閵娿儺娓婚悹鍥紦婢规洟姊绘担铏瑰笡濞撴碍顨婂畷鏉库槈濮樺彉绗夊┑鐐村灦鑿ゆ俊鎻掔墛缁绘盯宕卞Ο鍝勵潔濡炪倕绻掗崰鏍ь潖缂佹ɑ濯撮柤鎭掑劤閵嗗﹪姊洪棃鈺冪Ф缂佺姵鎹囬悰顔跨疀濞戞瑦娅㈤梺璺ㄥ櫐閹凤拷 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閻愵剙鍔ょ紓宥咃躬瀵鎮㈤崗灏栨嫽闁诲酣娼ф竟濠偽i鍓х<闁绘劦鍓欑粈鍐┿亜閺囧棗娲ら悡姗€鏌熸潏楣冩闁稿鍔欓弻娑樷枎韫囷絾效闂佽鍠楅悷褏妲愰幘瀛樺闁告繂瀚烽埀顒€鐭傞弻娑㈠Ω閵壯冪厽閻庢鍠栭…閿嬩繆閹间礁鐓涢柛灞剧煯缁ㄤ粙姊绘担鍛靛綊寮甸鍌滅煓闁硅揪瀵岄弫鍌炴煥閻曞倹瀚�