【題目】如圖:在正方形ABCD中,點P、Q是CD邊上的兩點,且DP=CQ,過D作DG⊥AP于H,交AC、BC分別于E,G,AP、EQ的延長線相交于R.
(1)求證:DP=CG;
(2)判斷△PQR的形狀,請說明理由.
【答案】(1)證明見解析;(2)△PQR為等腰三角形,理由見解析.
【解析】
(1)正方形對角線AC是對角的角平分線,可以證明△ADP≌△DCG,即可求證DP=CG.
(2)由(1)的結(jié)論可以證明△CEQ≌△CEG,進而證明∠PQR=∠QPR.故△PQR為等腰三角形.
(1)證明:在正方形ABCD中,
AD=CD,∠ADP=∠DCG=90°,
∠CDG+∠ADH=90°,
∵DH⊥AP,∴∠DAH+∠ADH=90°,
∴∠CDG=∠DAH,
∴△ADP≌△DCG,
∵DP,CG為全等三角形的對應(yīng)邊,
∴DP=CG.
(2)△PQR為等腰三角形.
∵∠QPR=∠DPA,∠PQR=∠CQE,CQ=DP,由(1)的結(jié)論可知
∴CQ=CG,∵∠QCE=∠GCE,CE=CE,
∴△CEQ≌△CEG,即∠CQE=∠CGE,
∴∠PQR=∠CGE,
∵∠QPR=∠DPA,
∴∠PQR=∠QPR,
所以△PQR為等腰三角形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一個20米高的樓頂上有一信號塔DC,某同學(xué)為了測量信號塔的高度,在地面的A處測得信號塔下端D的仰角為30°,然后他正對塔的方向前進了8米到達地面的B處,又測得信號塔頂端C的仰角為45°,CD⊥AB于點E,E、B、A在一條直線上.信號塔CD的高度是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校準備購進一批籃球和足球,買1個籃球和2個足球共需170元,買2個籃球和1個足球共需190元.
(1)求一個籃球和一個足球的售價各是多少元?
(2)學(xué)校欲購進籃球和足球共100個,且足球數(shù)量不多于籃球數(shù)量的2倍,求出最多購買足球多少個?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2010年開始合肥市開展了“體育、藝術(shù)2+1”活動,我校根據(jù)實際情況,決定主要開設(shè)A:乒乓球,B:象棋,C:籃球,D:跳繩這四種運動項目.為了解學(xué)生喜歡哪一種項目,隨機抽取了部分學(xué)生進行調(diào)查,并將調(diào)查結(jié)果繪制成如圖甲、乙所示的條形統(tǒng)計圖和扇形統(tǒng)計圖.請你結(jié)合圖中的信息解答下列問題:
(1)樣本中喜歡B項目的人數(shù)百分比是 ,其所在扇形統(tǒng)計圖中的圓心角的度數(shù)是 ;
(2)把條形統(tǒng)計圖補充完整;
(3)已知我校有學(xué)生2400人,根據(jù)樣本估計全校喜歡乒乓球的人數(shù)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,海中一漁船在A處與小島C相距70海里,若該漁船由西向東航行30海里到達B處,此時測得小島C位于B的北偏東30°方向上,則該漁船此時與小島C之間的距離是_____海里.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】央視熱播節(jié)目“朗讀者”激發(fā)了學(xué)生的閱讀興趣.某校為滿足學(xué)生的閱讀需求,欲購進一批學(xué)生喜歡的圖書,學(xué)校組織學(xué)生會成員隨機抽取部分學(xué)生進行問卷調(diào)查,被調(diào)查學(xué)生須從“文史類、社科類、小說類、生活類”中選擇自己喜歡的一類,根據(jù)調(diào)查結(jié)果繪制了統(tǒng)計圖(未完成),請根據(jù)圖中信息,解答下列問題:
(1)此次共調(diào)查了 名學(xué)生;
(2)將條形統(tǒng)計圖補充完整;
(3)圖2中“小說類”所在扇形的圓心角為 度;
(4)若該校共有學(xué)生2500人,估計該校喜歡“社科類”書籍的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某項工程由甲、乙兩個工程隊合作完成,先由甲隊單獨做3天,剩下的工作由甲、乙兩工程隊合作完成,工程進度滿足如圖所示的函數(shù)關(guān)系:
(1)求出圖象中②部分的解析式,并求出完成此項工程共需的天數(shù);
(2)該工程共支付8萬元,若按完成的工作量所占比例支付工資,甲工程隊應(yīng)得多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市五月遭遇了持續(xù)強降雨,造成部分地區(qū)洪澇災(zāi)害,某愛心組織緊急籌集了部分資金,計劃購買甲、乙兩種救災(zāi)物品共4000件送往災(zāi)區(qū),已知每件甲種物品的價格比每件乙種物品的價格貴10元,用300元購買甲種物品的件數(shù)恰好與用240元購買乙種物品的件數(shù)相同.
(1)求甲、乙兩種救災(zāi)物品每件的價格各是多少元?
(2)經(jīng)調(diào)查,災(zāi)區(qū)對乙種物品件數(shù)的需求量是甲種物品件數(shù)的3倍,若該愛心組織按照此需求的比例購買這4000件物品,需籌集資金多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有甲、乙兩個體育用品商店出售乒乓球拍和乒乓球,球拍每塊價格為48元,乒乓球每個價格為2元,已知甲店制定的優(yōu)惠方法是買--塊球拍送6個乒乓球,乙店按總價的收費,某球隊需要購買球拍4塊,乒乓球個(不少于24個).
(1)試用含有的代數(shù)式表示甲、乙兩店購買球拍4塊,乒乓球個的費用.
(2)當需要購買240個乒乓球時,選擇哪家商店購買更優(yōu)惠?請說明理由.
(3)當購買多少個乒乓球時,兩個商店的收費一樣多?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com