【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=ax2+bx+c的圖象經(jīng)過(guò)點(diǎn)A1,0),B0, ),C2,0),其對(duì)稱軸與x軸交于點(diǎn)D

1)求二次函數(shù)的表達(dá)式及其頂點(diǎn)坐標(biāo);

2)若Py軸上的一個(gè)動(dòng)點(diǎn),連接PD,求PB+PD的最小值;

3Mxt)為拋物線對(duì)稱軸上一動(dòng)點(diǎn)

①若平面內(nèi)存在點(diǎn)N,使得以AB,M,N為頂點(diǎn)的四邊形為菱形,則這樣的點(diǎn)N共有   個(gè)

②連接MA,MB,若∠AMB不小于60°,求t的取值范圍.

【答案】拋物線解析式為y=x2x﹣,頂點(diǎn)坐標(biāo)(,﹣).

(2)PB+PD的最小值為

(3)①5

②取值范圍是

【解析】二次函數(shù)的表達(dá)式有三種方法,這題很明顯可以用頂點(diǎn)式以及交點(diǎn)式更方便些;這一題根據(jù)邊的關(guān)系得出∠ABO=30°非常重要,根據(jù)在直角三角形中,30°所對(duì)的邊是斜邊的一半把所要求的邊轉(zhuǎn)化,再根據(jù)點(diǎn)到直線垂線段最短求得最小值;第三問(wèn)ABMN組成菱形,只有AB是定點(diǎn),所以要討論AB是鄰邊還是對(duì)角線;最后一問(wèn)與圓的知識(shí)相結(jié)合,有一定的難度,主要根據(jù)∠ABO=30°,AB=2是定值,以AB的垂直平分線與y軸的交點(diǎn)為圓心F,以FA為半徑,則弧AB所對(duì)的圓周角為60°,與對(duì)稱軸的兩個(gè)交點(diǎn)即為t的取值范圍。

解:(1)方法一:設(shè)二次函數(shù)的表達(dá)式為,B(0,-)代入解得

∴頂點(diǎn)坐標(biāo)為

方法二:也可以用三點(diǎn)式設(shè)代入三點(diǎn)或者頂點(diǎn)式設(shè)代入兩點(diǎn)求得。

如圖,過(guò)P點(diǎn)作DE⊥AB于E點(diǎn),由題意已知∠ABO=30°。

要使最小,只需要D、P、E共線,所以過(guò)D點(diǎn)作DE⊥AB于E點(diǎn),與y軸的交點(diǎn)即為P點(diǎn)。

由題意易知,∠ADE=∠ABO=30°,

①若A、B、M、N為頂點(diǎn)的四邊形為菱形,分兩種情況,由題意知,AB=2,

若AB為邊菱形的邊,因?yàn)镸為拋物線對(duì)稱軸上的一點(diǎn),即分別以A、B為頂點(diǎn),AB的長(zhǎng)為半徑作圓與對(duì)稱軸的交點(diǎn)即為M點(diǎn),這樣的M點(diǎn)有四個(gè),如圖

若AB為菱形的對(duì)角線,根據(jù)菱形的性質(zhì),作AB的垂直平分線與對(duì)稱軸的交點(diǎn)即為M點(diǎn)。

綜上所述,這樣的M點(diǎn)有5個(gè),所以對(duì)應(yīng)的N點(diǎn)有5個(gè)。

②如圖,作AB的垂直平分線,與y軸交于F點(diǎn)。

由題意知,AB=2,∠BAF=∠ABO=30°,∠AFB=120°

∴以F為圓心,AF的長(zhǎng)為半徑作圓交對(duì)稱軸于M和M'點(diǎn),則∠AMB=∠AM'B=∠AFB=60°

∵∠BAF=∠ABO=30°,OA=1

∴∠FAO=30°,AF==FM=FM',OF=,過(guò)F點(diǎn)作FG⊥MM'于G點(diǎn),已知FG=

,又∵G

∴M(,M'

方法二:設(shè)M,M到點(diǎn)F的距離d=AF=也可求得.

“點(diǎn)睛”本題考查二次函數(shù)綜合題、銳角三角函數(shù)、最短問(wèn)題、圓等知識(shí),解題的關(guān)鍵是掌握待定系數(shù)法確定解析式,學(xué)會(huì)利用垂線最短解決實(shí)際問(wèn)題中 的最短問(wèn)題,學(xué)會(huì)添加輔助線,構(gòu)造圓解決角度問(wèn)題,屬于中考?jí)狠S題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若關(guān)于x的一元二次方程x2+bx+c=0的兩個(gè)實(shí)數(shù)根分別為x1=﹣2,x2=4,則b+c的值是(
A.﹣10
B.10
C.﹣6
D.﹣1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】看圖填空,并在括號(hào)內(nèi)說(shuō)明理由: 如圖,已知∠BAP與∠APD互補(bǔ),∠1=∠2,說(shuō)明∠E=∠F.
∵∠BAP與∠APD互補(bǔ),
∴∠E=∠F.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一次函數(shù)的圖象經(jīng)過(guò)M(3,2),N(﹣1,﹣6)兩點(diǎn).
(1)求函數(shù)表達(dá)式;
(2)請(qǐng)判定點(diǎn)A(1,﹣2)是否在該一次函數(shù)圖象上,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解方程:(1x26x+5=0 2xx4+5x4=0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABCD的對(duì)角線AC、BD相交于點(diǎn)O,點(diǎn)E是CD的中點(diǎn),BC=10cm.求OE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】行駛中的汽車剎車后,由于慣性的作用,還會(huì)繼續(xù)向前滑行一段距離,這段距離稱為“剎車距離”.某車的剎車距離skm)與車速xkm/h)之間有下述的函數(shù)關(guān)系式:s0.01x0.004x2,請(qǐng)推測(cè)剎車時(shí)該汽車的最大剎車距離為_____km

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小亮在勻速行駛的汽車?yán)铮⒁獾焦防锍瘫系臄?shù)如下表所示:

時(shí)刻

12:00

13:00

16:00

里程碑上的數(shù)

是一個(gè)兩位數(shù)

十位數(shù)字和個(gè)位數(shù)字與12:00時(shí)所看到的正好顛倒了

比12:00時(shí)看到的兩位數(shù)中間多了個(gè)0

12:00時(shí)看到的兩位數(shù)是_____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某班抽查25名學(xué)生數(shù)學(xué)測(cè)驗(yàn)成績(jī)(單位:分),頻數(shù)分布直方圖如圖:

1)成績(jī)x在什么范圍的人數(shù)最多?是多少人?

2)若用半徑為2的扇形圖來(lái)描述,成績(jī)?cè)?/span>60≤x70的人數(shù)對(duì)應(yīng)的扇形面積是多少?

3)從相成績(jī)?cè)?/span>50≤x6090≤x100的學(xué)生中任選2人.小李成績(jī)是96分,用樹狀圖或列表法列出所有可能結(jié)果,求小李被選中的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案