【題目】兩塊等腰直角三角板△ABC△DEC如圖擺放,其中∠ACB=∠DCE=90°,F(xiàn)DE的中點,HAE的中點,GBD的中點.

(1)如圖1,若點D、E分別在AC、BC的延長線上,通過觀察和測量,猜想FHFG的數(shù)量關系為______和位置關系為______;

(2)如圖2,若將三角板△DEC繞著點C順時針旋轉至ACE在一條直線上時,其余條件均不變,則(1)中的猜想是否還成立,若成立,請證明,不成立請說明理由;

(3)如圖3,將圖1中的△DEC繞點C順時針旋轉一個銳角,得到圖3,(1)中的猜想還成立嗎?直接寫出結論,不用證明.

【答案】(1)相等,垂直.(2)成立,證明見解析;(3)成立,結論是FH=FG,F(xiàn)HFG.

【解析】

試題(1)證AD=BE,根據(jù)三角形的中位線推出FH=AD,F(xiàn)H∥AD,F(xiàn)G=BE,F(xiàn)G∥BE,即可推出答案;
(2)證△ACD≌△BCE,推出AD=BE,根據(jù)三角形的中位線定理即可推出答案;
(3)連接BE、AD,根據(jù)全等推出AD=BE,根據(jù)三角形的中位線定理即可推出答案.

試題解析:

(1)解:∵CE=CD,AC=BC,ECA=DCB=90°,

BE=AD,

FDE的中點,HAE的中點,GBD的中點,

FH=AD,F(xiàn)HAD,F(xiàn)G=BE,F(xiàn)GBE,

FH=FG,

ADBE,

FHFG,

故答案為:相等,垂直.

(2)答:成立,

證明:∵CE=CD,ECD=ACD=90°,AC=BC,

∴△ACD≌△BCE

AD=BE,

由(1)知:FH=AD,F(xiàn)HAD,F(xiàn)G=BE,F(xiàn)GBE,

FH=FG,F(xiàn)HFG,

(1)中的猜想還成立.

(3)答:成立,結論是FH=FG,F(xiàn)HFG.

連接AD,BE,兩線交于Z,ADBCX,

同(1)可證

FH=AD,F(xiàn)HAD,F(xiàn)G=BE,F(xiàn)GBE,

∵三角形ECD、ACB是等腰直角三角形,

CE=CD,AC=BC,ECD=ACB=90°,

∴∠ACD=BCE,

ACDBCE

∴△ACD≌△BCE,

AD=BE,EBC=DAC,

∵∠DAC+CXA=90°,CXA=DXB,

∴∠DXB+EBC=90°,

∴∠EZA=180°﹣90°=90°,

ADBE,

FHAD,F(xiàn)GBE,

FHFG,

FH=FG,F(xiàn)HFG,

結論是FH=FG,F(xiàn)HFG.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD的對角線AC、BD相交于點O,DE∥AC,CE∥BD.
(1)求證:四邊形OCED為菱形;
(2)連接AE、BE,AE與BE相等嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,二次函數(shù)y=﹣ x2+ x+2的圖象與x軸交于點A,B(點B在點A的左側),與y軸交于點C.過動點H(0,m)作平行于x軸的直線l,直線l與二次函數(shù)y=﹣ x2+ x+2的圖象相交于點D,E.

(1)寫出點A,點B的坐標;
(2)若m>0,以DE為直徑作⊙Q,當⊙Q與x軸相切時,求m的值;
(3)直線l上是否存在一點F,使得△ACF是等腰直角三角形?若存在,求m的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在△ABC中,∠1=∠2,G是AD的中點,延長BG交AC于點E,F(xiàn)為AB上一點,CF⊥AD交AD于點H.下列說法:①AD是△ABE的角平分線;②BE是△ABD的邊AD上的中線;③CH為△ACD的邊AD上的高;④AH是△ACF的角平分線和高線.其中正確的有_______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知正反比例函數(shù)的圖像交于、兩點,過第二象限的點,的橫坐標為,,在第四象限

(1)求這兩個函數(shù)解析式;

(2)求這兩個函數(shù)圖像的交點坐標;

(3)若點在坐標軸上,聯(lián)結、寫出當時的點坐標

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為的正方形組成的網(wǎng)格中,的頂點均在格點上,點的坐標分別是,,關于軸對稱的圖形為

畫出并寫出點的坐標為________

寫出的面積為________;

軸上,使的值最小,寫出點的坐標為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,已知分別為兩坐標軸上的點,且,滿足,且.

(1)求、、三點的坐標;

(2)若,過點的直線分別交、、兩點,且,設兩點的橫坐標分別為、,求的值;

(3)如圖2,若,點軸上點右側一動點,于點,在上取點,使,連接,當點在點右側運動時,的度數(shù)是否改變?若不變,請求其值;若改變,請說明理由.

1 2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的一元二次方程x2+(m+3)x+m+1=0.
(1)求證:無論m取何值,原方程總有兩個不相等的實數(shù)根:
(2)若x1 , x2是原方程的兩根,且|x1﹣x2|=2 ,求m的值,并求出此時方程的兩根.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】內一點,且點到三邊的距離相等,,則________

查看答案和解析>>

同步練習冊答案