(2009•遼寧)有兩張完全重合的矩形紙片,小亮同學將其中一張繞點A順時針旋轉90°后得到矩形AMEF(如圖1),連接BD、MF,若此時他測得BD=8cm,∠ADB=30度.
(1)試探究線段BD與線段MF的關系,并簡要說明理由;
(2)小紅同學用剪刀將△BCD與△MEF剪去,與小亮同學繼續(xù)探究.他們將△ABD繞點A順時針旋轉得△AB1D1,AD1交FM于點K(如圖2),設旋轉角為β(0°<β<90°),當△AFK為等腰三角形時,請直接寫出旋轉角β的度數(shù);
(3)若將△AFM沿AB方向平移得到△A2F2M2(如圖3),F(xiàn)2M2與AD交于點P,A2M2與BD交于點N,當NP∥AB時,求平移的距離是多少?

【答案】分析:(1)有兩張完全重合的矩形紙片,小亮同學將其中一張繞點A順時針旋轉90°后得到矩形AMEF(如圖1),得BD=MF,△BAD≌△MAF,推出BD=MF,∠ADB=∠AFM=30°,進而可得∠DNM的大。
(2)根據(jù)旋轉的性質得出結論.
(3)求平移的距離是A2A的長度.在矩形PNA2A中,A2A=PN,只要求出PN的長度就行.用△DPN∽△DAB得出:,解得A2A的大小.
解答:解:(1)BD=MF,BD⊥MF.(1分)
延長FM交BD于點N,
由題意得:△BAD≌△MAF.
∴BD=MF,∠ADB=∠AFM.(2分)
又∵∠DMN=∠AMF,
∴∠ADB+∠DMN=∠AFM+∠AMF=90°,
∴∠DNM=90°,∴BD⊥MF.(3分)

(2)當AK=FK時,∠KAF=∠F=30°,
則∠BAB1=180°-∠B1AD1-∠KAF=180°-90°-30°=60°,
即β=60°;
②當AF=FK時,∠FAK==75°,
∴∠BAB1=90°-∠FAK=15°,
即β=15°;
∴β的度數(shù)為60°或15°(答對一個得2分)(7分)

(3)由題意得矩形PNA2A.設A2A=x,則PN=x(如圖3),
在Rt△A2M2F2中,∵F2M2=FM=8,
∴A2M2=4,A2F2=4,∴AF2=4-x.
∵∠PAF2=90°,∠PF2A=30°,
∴AP=AF2•tan30°=4-x.
∴PD=AD-AP=4-4+x.
∵NP∥AB,∴∠DNP=∠B.
∵∠D=∠D,∴△DPN∽△DAB.(9分)
.(10分)
,解得x=6-2.(11分)
即A2A=6-2
答:平移的距離是(6-2)cm.(12分)
點評:考查旋轉的性質,相似三角形的判定,全等三角形的判定,平移的性質.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2009年全國中考數(shù)學試題匯編《圖形的相似》(06)(解析版) 題型:解答題

(2009•遼寧)有兩張完全重合的矩形紙片,小亮同學將其中一張繞點A順時針旋轉90°后得到矩形AMEF(如圖1),連接BD、MF,若此時他測得BD=8cm,∠ADB=30度.
(1)試探究線段BD與線段MF的關系,并簡要說明理由;
(2)小紅同學用剪刀將△BCD與△MEF剪去,與小亮同學繼續(xù)探究.他們將△ABD繞點A順時針旋轉得△AB1D1,AD1交FM于點K(如圖2),設旋轉角為β(0°<β<90°),當△AFK為等腰三角形時,請直接寫出旋轉角β的度數(shù);
(3)若將△AFM沿AB方向平移得到△A2F2M2(如圖3),F(xiàn)2M2與AD交于點P,A2M2與BD交于點N,當NP∥AB時,求平移的距離是多少?

查看答案和解析>>

科目:初中數(shù)學 來源:2009年全國中考數(shù)學試題匯編《圖形的旋轉》(04)(解析版) 題型:解答題

(2009•遼寧)有兩張完全重合的矩形紙片,小亮同學將其中一張繞點A順時針旋轉90°后得到矩形AMEF(如圖1),連接BD、MF,若此時他測得BD=8cm,∠ADB=30度.
(1)試探究線段BD與線段MF的關系,并簡要說明理由;
(2)小紅同學用剪刀將△BCD與△MEF剪去,與小亮同學繼續(xù)探究.他們將△ABD繞點A順時針旋轉得△AB1D1,AD1交FM于點K(如圖2),設旋轉角為β(0°<β<90°),當△AFK為等腰三角形時,請直接寫出旋轉角β的度數(shù);
(3)若將△AFM沿AB方向平移得到△A2F2M2(如圖3),F(xiàn)2M2與AD交于點P,A2M2與BD交于點N,當NP∥AB時,求平移的距離是多少?

查看答案和解析>>

科目:初中數(shù)學 來源:2010年遼寧省錦州市黑山縣北關實驗校中考數(shù)學模擬試卷(解析版) 題型:解答題

(2009•遼寧)有兩張完全重合的矩形紙片,小亮同學將其中一張繞點A順時針旋轉90°后得到矩形AMEF(如圖1),連接BD、MF,若此時他測得BD=8cm,∠ADB=30度.
(1)試探究線段BD與線段MF的關系,并簡要說明理由;
(2)小紅同學用剪刀將△BCD與△MEF剪去,與小亮同學繼續(xù)探究.他們將△ABD繞點A順時針旋轉得△AB1D1,AD1交FM于點K(如圖2),設旋轉角為β(0°<β<90°),當△AFK為等腰三角形時,請直接寫出旋轉角β的度數(shù);
(3)若將△AFM沿AB方向平移得到△A2F2M2(如圖3),F(xiàn)2M2與AD交于點P,A2M2與BD交于點N,當NP∥AB時,求平移的距離是多少?

查看答案和解析>>

科目:初中數(shù)學 來源:2009年遼寧省中考數(shù)學試卷(解析版) 題型:解答題

(2009•遼寧)有兩張完全重合的矩形紙片,小亮同學將其中一張繞點A順時針旋轉90°后得到矩形AMEF(如圖1),連接BD、MF,若此時他測得BD=8cm,∠ADB=30度.
(1)試探究線段BD與線段MF的關系,并簡要說明理由;
(2)小紅同學用剪刀將△BCD與△MEF剪去,與小亮同學繼續(xù)探究.他們將△ABD繞點A順時針旋轉得△AB1D1,AD1交FM于點K(如圖2),設旋轉角為β(0°<β<90°),當△AFK為等腰三角形時,請直接寫出旋轉角β的度數(shù);
(3)若將△AFM沿AB方向平移得到△A2F2M2(如圖3),F(xiàn)2M2與AD交于點P,A2M2與BD交于點N,當NP∥AB時,求平移的距離是多少?

查看答案和解析>>

同步練習冊答案