【題目】如圖,AB是⊙O的直徑,點(diǎn)C是弧AB的中點(diǎn),點(diǎn)D是⊙O外一點(diǎn),AD=AB,AD交⊙O于F,BD交⊙O于E,連接CE交AB于G.
(1)證明:∠C=∠D;
(2)若∠BEF=140°,求∠C的度數(shù);
(3)若EF=2,tanB=3,求CECG的值.
【答案】(1)見解析;(2)70°;(3)20.
【解析】
(1)先根據(jù)等邊對(duì)等角得出∠B=∠D,即可得出結(jié)論;
(2)先判斷出∠DFE=∠B,進(jìn)而得出∠D=∠DFE,即可求出∠D=70°,即可得出結(jié)論;
(3)先求出BE=EF=2,進(jìn)而求AE=6,即可得出AB,進(jìn)而求出AC,再判斷出△ACG∽△ECA,即可得出結(jié)論.
(1)∵AB=AD,
∴∠B=∠D,
∵∠B=∠C,
∴∠C=∠D;
(2)∵四邊形ABEF是圓內(nèi)接四邊形,
∴∠DFE=∠B,
由(1)知,∠B=∠D,
∴∠D=∠DFE,
∵∠BEF=140°=∠D+∠DFE=2∠D,
∴∠D=70°,
由(1)知,∠C=∠D,
∴∠C=70°;
(3)如圖,由(2)知,∠D=∠DFE,
∴EF=DE,
連接AE,OC,
∵AB是⊙O的直徑,
∴∠AEB=90°,
∴BE=DE,
∴BE=EF=2,
在Rt△ABE中,tanB==3,
∴AE=3BE=6,根據(jù)勾股定理得,AB=,
∴OA=OC=AB=,
∵點(diǎn)C是 的中點(diǎn),
∴ ,
∴∠AOC=90°,
∴AC=OA=2,
∵,
∴∠CAG=∠CEA,
∵∠ACG=∠ECA,
∴△ACG∽△ECA,
∴,
∴CECG=AC2=20.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線表示三條相互交叉的公路,現(xiàn)要建一個(gè)貨物中轉(zhuǎn)站,要求它到三條公路的距離相等,則可供選擇的地址有( )
A.一處B.二處C.三處D.四處
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】以水潤城,打造四河一庫生態(tài)水系工程,是鞏義堅(jiān)持不懈推進(jìn)文明創(chuàng)建與百城提質(zhì)深度融合的縮影,伊洛河畔正是此項(xiàng)目中的一段.如今,伊洛河畔需要鋪設(shè)一條長為米的管道,決定由甲、乙兩個(gè)工程隊(duì)來完成.已知甲工程隊(duì)比乙工程隊(duì)每天能多鋪設(shè)米,且甲工程隊(duì)鋪設(shè)米所用的天數(shù)與乙工程隊(duì)鋪設(shè)米所用的天數(shù)相同.(完成任務(wù)的工期為整數(shù))
(1)甲、乙工程隊(duì)每天各能鋪設(shè)多少米?
(2)如果要求完成該項(xiàng)管道鋪設(shè)任務(wù)的工期不超過天,那么為兩工程隊(duì)分配工程量的方案有幾種?請(qǐng)你幫助設(shè)計(jì)出來(工程隊(duì)分配工程量為整百數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,是的直徑,是的弦,為上一點(diǎn),過點(diǎn)作,交弦于點(diǎn),交于點(diǎn),且.
求證:是的切線;
如果,,,求半徑的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知□ABCD中,AE⊥BC于E,AF⊥CD于F. 若□ABCD的周長為72cm,AE=8cm,AF=10cm,求□ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD,AC分別是⊙O的直徑和弦.且∠CAD=30°.OB⊥AD交AC于點(diǎn)B.若OB=4,則BC長為( 。
A. 2 B. 3 C. 3.6 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解:
關(guān)于x的方程:x+=c+的解為x1=c,x2=;x﹣=c﹣(可變形為x+=c+)的解為x1=c,x2=;x+=c+的解為x1=c,x2= Zx+=c+的解為x1=c,x2=Z.
(1)歸納結(jié)論:根據(jù)上述方程與解的特征,得到關(guān)于x的方程x+=c+(m≠0)的解為 .
(2)應(yīng)用結(jié)論:解關(guān)于y的方程y﹣a=﹣
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,BC=a,AC=b,AB=c,⊙D與BC、AC、AB都相切,切點(diǎn)分別是E、F、G,BA、ED的延長線交于點(diǎn)H,a、b是關(guān)于x的方程x2﹣(c+4)x+4c+8=0的兩個(gè)根.
(1)求證:△ABC是直角三角形;
(2)若25asin∠BAC=9c,求四邊形CEDF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為進(jìn)一步發(fā)展基礎(chǔ)教育,自2014年以來,某縣加大了教育經(jīng)費(fèi)的投入,2014年該縣投入教育經(jīng)費(fèi)6000萬元。2016年投入教育經(jīng)費(fèi)8640萬元。假設(shè)該縣這兩年投入教育經(jīng)費(fèi)的年平均增長率相同。
(1)求這兩年該縣投入教育經(jīng)費(fèi)的年平均增長率;
(2)若該縣教育經(jīng)費(fèi)的投入還將保持相同的年平均增長率,請(qǐng)你預(yù)算2017年該縣投入教育經(jīng)費(fèi)多少萬元。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com