【題目】如圖,在反比例函數(shù)圖象中,△AOB是等邊三角形,點A在雙曲線的一支上,將△AOB繞點O順時針旋轉(zhuǎn)α α360° ),使點A仍在雙曲線上,則α_____

【答案】30°180°、210°

【解析】

根據(jù)等邊三角形的性質(zhì),雙曲線的軸對稱性和中心對稱性即可求解.

解:根據(jù)反比例函數(shù)的軸對稱性,A點關(guān)于直線yx對稱,

∵△OAB是等邊三角形,

∴∠AOB60°,

AO與直線yx的夾角是15°,

α2×15°30°時點A落在雙曲線上,

根據(jù)反比例函數(shù)的中心對稱性,

∴點A旋轉(zhuǎn)到直線OA上時,點A落在雙曲線上,

∴此時α180°

根據(jù)反比例函數(shù)的軸對稱性,繼續(xù)旋轉(zhuǎn)30°時,點A落在雙曲線上,

∴此時α210°

故答案為:30°、180°210°

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,以原點為對稱中心,把點A(3,4)逆時針旋轉(zhuǎn)90°,得到點B,則點B的坐標為(

A. (4,-3) B. (-4,3) C. (-3,4) D. (-3,-4)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,AD=BC,∠A=B,EAB的中點,連結(jié)CEDE.

1)求證:ADE≌△BCE.

2)若∠A70°,∠BCE60°,求∠CDE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,E為邊CD的中點,AEBD于點O,若SDOE=2,則平行四邊形ABCD的面積為( )

A. 8B. 12C. 16D. 24

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一帶一路的戰(zhàn)略構(gòu)想為國內(nèi)許多企業(yè)的發(fā)展帶來了新的機遇,某公司生產(chǎn)A,B兩種機械設(shè)備,每臺B種設(shè)備的成本是A種設(shè)備的1.5倍,公司若投入16萬元生產(chǎn)A種設(shè)備,36萬元生產(chǎn)B種設(shè)備,則可生產(chǎn)兩種設(shè)備共10臺.請解答下列問題:

(1)A、B兩種設(shè)備每臺的成本分別是多少萬元?

(2)A,B兩種設(shè)備每臺的售價分別是6萬元,10萬元,公司決定生產(chǎn)兩種設(shè)備共60臺,計劃銷售后獲利不低于126萬元,且A種設(shè)備至少生產(chǎn)53臺,求該公司有幾種生產(chǎn)方案.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABO中,∠BAO90°,AOAB,BO8,點A的坐標(﹣80),點C在線段AO上以每秒2個單位長度的速度由AO運動,運動時間為t秒,連接BC,過點AADBC,垂足為點E,分別交BO于點F,交y軸于點 D

1)用t表示點D的坐標   ;

2)如圖1,連接CF,當t2時,求證:∠FCO=∠BCA;

3)如圖2,當BC平分∠ABO時,求t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在半徑等于5cm的圓內(nèi)有長為5cm的弦,則此弦所對的圓周角為(

A.120° B.30°或120°

C.60° D.60°或120°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校圍繞著你最喜歡的體育活動項目是什么?(只寫一項)的問題,對在校學生進行了隨機抽樣調(diào)查,從而得到一組數(shù)據(jù),如圖1是根據(jù)這組數(shù)據(jù)繪制的條形統(tǒng)計圖,請結(jié)合統(tǒng)計圖回答下列問題:

(1)該校對多少名學生進行了抽樣調(diào)查?

(2)本次抽樣調(diào)查中,最喜歡足球活動的有多少人?占被調(diào)查人數(shù)的百分比是多少?

(3)若該校九年級共有400名學生,圖2是根據(jù)各年級學生人數(shù)占全校學生總?cè)藬?shù)的百分比繪制的扇形統(tǒng)計圖,請你估計全校學生中最喜歡籃球活動的人數(shù)約為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABO的直徑,點C是圓上任意一點,點DAC中點,ODAC于點E,BDAC于點F,若BF1.25DF,則tanABD的值為( 。

A. B. C. D.

查看答案和解析>>

同步練習冊答案