【題目】如圖,邊長分別為4和8的兩個正方形ABCD和CEFG并排放在一起,連結(jié)BD并延長交EG于點T,交FG于點P,則GT的長為_____.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點E、F分別是四邊形ABCD邊AB、AD上的點,且DE與CF相交于點G.
(1)如圖①,若AB∥CD,AB=CD,∠A=90°,且ADDF=AEDC,求證:DE⊥CF:
(2)如圖②,若AB∥CD,AB=CD,且∠A=∠EGC時,求證:DECD=CFDA:
(3)如圖③,若BA=BC=3,DA=DC=4,設(shè)DE⊥CF,當(dāng)∠BAD=90°時,試判斷是否為定值,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在Rt△ABC中,∠C=90°,D是BC邊上一點,AC=6,CD=3,∠ADC=α.
(1)試寫出α的正弦、余弦、正切這三個函數(shù)值;
(2)若∠B與∠ADC互余,求BD及AB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC和△DEF的頂點分別為A(1,0)、B(3,0)、C(2,1)、D(4,3)、E(6,5)、F(4,7).
按下列要求畫圖:以點O為位似中心,將△ABC向y軸左側(cè)按比例尺2:1放大得△ABC的位似圖形△A1B1C1,并解決下列問題:
(1)頂點A1的坐標(biāo)為 ,B1的坐標(biāo)為 ,C1的坐標(biāo)為 ;
(2)請你利用旋轉(zhuǎn)、平移兩種變換,使△A1B1C1通過變換后得到△A2B2C2,且△A2B2C2恰與△DEF拼接成一個平行四邊形(非正方形),寫出符合要求的變換過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,將筆記本活頁一角折過去,使角的頂點A落在處,BC為折痕。
(1)圖①中,若∠1=30°,求∠的度數(shù);
(2)如果又將活頁的另一角斜折過去,使BD邊與BA重合,折痕為BE,如圖②所示,∠1=30°,求∠2以及∠的度數(shù);
(3)如果在圖②中改變∠1的大小,則的位置也隨之改變,那么問題(2)中∠的大小是否改變?請說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)軸上點A表示的數(shù)為6,B是數(shù)軸上在左側(cè)的一點,且A,B兩點間的距離為10。動點P從點A出發(fā),以每秒6個單位長度的度沿數(shù)軸向左勻速運動,設(shè)運動時間為t秒。
(1)數(shù)軸上點B表示的數(shù)是______;當(dāng)點P運動到AB的中點時,它所表示的數(shù)是_____。
(2)動點Q從點B出發(fā),以每秒2個單位長度的速度沿數(shù)軸向左勻速運動,若點P、Q同時出發(fā),求:
①當(dāng)點P運動多少秒時,點P追上點Q?
②當(dāng)點P運動多少秒時,點P與點Q間的距離為8個單位長度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,數(shù)軸上的點A,B,C,D,E表示連續(xù)的五個整數(shù),對應(yīng)的數(shù)分別為a,b,c,d,e.
(1)若a=-3,則e = ;
(2)若a+e=0,則代數(shù)式b+c+d= ;
(3)若d是最大的負整數(shù),求代數(shù)式的值(寫出求解過程).
(4)若e=4,F也為數(shù)軸上一點,且BE=2FE,則F表示的數(shù)為 ;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】近年來,德強學(xué)校初中部中考屢創(chuàng)佳績,捷報頻傳.為了吸納更多的優(yōu)質(zhì)生源,學(xué)校決定要新建一棟層的教學(xué)大樓,每層樓有間教室,進出這棟大樓共有道門,其中兩道正門大小相同,兩道側(cè)門大小相同,進樓前為了保證學(xué)生安全,對道門進行了測試:正常情況下,當(dāng)同時開啟一道正門和兩道側(cè)門時,分鐘可以通過名學(xué)生;當(dāng)同時開啟一道正門和一道側(cè)門時分鐘可以通過名學(xué)生.
(1)正常情況下,平均每分鐘一道正門和一道側(cè)門各可以通過多少名學(xué)生?
(2)檢查中發(fā)現(xiàn),緊急情況時因?qū)W生擁擠,出門的效率將降低,安全檢查規(guī)定,在緊急情況下全大樓的學(xué)生應(yīng)在分鐘內(nèi)通過這道門安全撤離.如果這棟教學(xué)樓每班預(yù)計招收45名學(xué)生,那么建造的這道門是否符合安全規(guī)定?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,點E是BC上一點(不與點B,C重合),點M是AE上一點(不與點A,E重合),連接并延長CM交AB于點G,將線段CM繞點C按順時針方向旋轉(zhuǎn)90°,得到線段CN,射線BN分別交AE的延長線和GC的延長線于D,F.
(1)求證:△ACM≌△BCN;
(2)求∠BDA的度數(shù);
(3)若∠EAC=15°,∠ACM=60°,AC=+1,求線段AM的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com