【題目】《九章算術》是我國古代數(shù)學成就的杰出代表作,書中記載:“今有圓材埋壁中,不知大。凿忎徶,深1寸,鋸道長1尺,問經幾何?“其意思為:“如圖,今有一圓形木材埋在墻壁中,不知其大小用鋸子去鋸這個木材,鋸口深1寸(即DE1寸),鋸道長1尺(即弦AB1尺),問這塊圓形木材的直徑是多少?”該問題的答案是_____(注:1尺=10寸)

【答案】26

【解析】

延長CD,交⊙O于點E,連接OA,由題意知CE過點O,且OCABADBDAB5(寸),設圓形木材半徑為r,可知ODr1OAr,根據(jù)OA2OD2+AD2列方程求解可得.

延長CD,交⊙O于點E,連接OA,

由題意知CE過點O,且OCAB,

ADBDAB5(寸),

設圓形木材半徑為r,

ODr1,OAr,

OA2OD2+AD2

r2=(r12+52,

解得r13,

所以⊙O的直徑為26寸,

故答案為:26寸.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某學校八、九兩個年級各有學生180人,為了解這兩個年級學生的體質健康情況,進行了抽樣調查,具體過程如下:

  收集數(shù)據(jù)

從八、九兩個年級各隨機抽取20名學生進行體質健康測試,測試成績(百分制)如下:

八年級

78

86

74

81

75

76

87

70

75

90

75

79

81

70

74

80

86

69

83

77

九年級

93

73

88

81

72

81

94

83

77

83

80

81

70

81

73

78

82

80

70

40

整理、描述數(shù)據(jù)

將成績按如下分段整理、描述這兩組樣本數(shù)據(jù):

成績(x

40≤x≤49

50≤x≤59

60≤x≤69

70≤x≤79

80≤x≤89

90≤x≤100

八年級人數(shù)

0

0

1

11

7

1

九年級人數(shù)

1

0

0

7

10

2

(說明:成績80分及以上為體質健康優(yōu)秀,7079分為體質健康良好,6069分為體質健康合格,60分以下為體質健康不合格)

  分析數(shù)據(jù)

兩組樣本數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)、方差如表所示:

年級

平均數(shù)

中位數(shù)

眾數(shù)

方差

八年級

78.3

77.5

75

33.6

九年級

78

80.5

a

52.1

1)表格中a的值為______;

2)請你估計該校九年級體質健康優(yōu)秀的學生人數(shù)為多少?

3)根據(jù)以上信息,你認為哪個年級學生的體質健康情況更好一些?請說明理由.(請從兩個不同的角度說明推斷的合理性)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算

1(xy)22x(xy);     2(a1)(a1)(a1)2;

3)先化簡,再求值:

(x2y)(x2y)(2x3y4x2y2)÷2xy,其中x=3,.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】RtABC,ACB=90°,AC=BC=2,PBC邊上的一個動點(不與B.C重合)P關于直線ACAB的對稱點分別為M、N,連接MNAC于點E,AB于點F.

(1)當點P為線段BC的中點時,求∠M的正切值

(2)當點P在線段BC上運動時(不與B.C重合),連接AMAN,求證:

①△AMN為等腰直角三角形

②△AEF∽△BAM

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我市最近開通了“1號水路觀光游覽專線,某中學數(shù)學活動小組帶上高度為1.6m的測角儀,對其標志性建筑AO進行測量高度的綜合實踐活動,如圖,在BC處測得直立于地面的AO頂點A的仰角為30°,然后前進20mDE處,測得頂點A的仰角為75°

1)求AE的長(結果保留根號);

2)求高度AO(精確到個位,參考數(shù)據(jù):

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,直線1y=﹣x+1x軸、y軸分別交于點B、點E,拋物線Lyax2+bx+c經過點B、點A(﹣3,0)和點C0,﹣3),并與直線l交于另一點D

1)求拋物線L的解析式;

2)點Px軸上一動點

①如圖2,過點Px軸的垂線,與直線1交于點M,與拋物線L交于點N.當點P在點A、點B之間運動時,求四邊形AMBN面積的最大值;

②連接ADAC,CP,當∠PCA=∠ADB時,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(2014山東淄博)如圖,四邊形ABCD中,AC⊥BDBD于點E,點FM分別是AB,BC的中點,BN平分∠ABEAM于點NABACBD,連接MFNF

(1)判斷△BMN的形狀,并證明你的結論;

(2)判斷△MFN△BDC之間的關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)如圖1,在矩形ABCD中,AB2,BC5,∠MPN90°,且∠MPN的直角頂點在BC邊上,BP1

①特殊情形:若MP過點A,NP過點D,則   

②類比探究:如圖2,將∠MPN繞點P按逆時針方向旋轉,使PMAB邊于點E,PNAD邊于點F,當點E與點B重合時,停止旋轉.在旋轉過程中,的值是否為定值?若是,請求出該定值;若不是,請說明理由.

2)拓展探究:在RtABC中,∠ABC90°,ABBC2,ADAB,⊙A的半徑為1,點E是⊙A上一動點,CFCEAD于點F.請直接寫出當△AEB為直角三角形時的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB:BC=3:5,點E是對角線BD上一動點(不與點B,D重合),將矩形沿過點E的直線MN折疊,使得點A,B的對應點G,F分別在直線AD與BC上,當△DEF為直角三角形時,CN:BN的值為______.

查看答案和解析>>

同步練習冊答案