【題目】如圖,是拋物線y=ax2+bx+c(a≠0)圖象的一部分.已知拋物線的對稱軸為x=2,與x軸的一個交點是(﹣1,0).有下列結論:

abc>0;4a﹣2b+c<0;4a+b=0;拋物線與x軸的另一個交點是(5,0);點(﹣3,y1),(6,y2)都在拋物線上,則有y1<y2

其中正確的是(

A.①②③ B.②④⑤ C.①③④ D.③④⑤

【答案】C.

【解析】

試題分析:①∵二次函數(shù)的圖象開口向上,

a>0,

二次函數(shù)的圖象交y軸的負半軸于一點,

c<0,

對稱軸是直線x=2,

=2,

b=﹣4a<0,

abc>0.

正確;

把x=﹣2代入y=ax2+bx+c

得:y=4a﹣2b+c,

由圖象可知,當x=﹣2時,y>0,

即4a﹣2b+c>0.

錯誤;

③∵b=﹣4a,

4a+b=0.

正確;

④∵拋物線的對稱軸為x=2,與x軸的一個交點是(﹣1,0),

拋物線與x軸的另一個交點是(5,0).

正確;

⑤∵(﹣3,y1)關于直線x=2的對稱點的坐標是(7,y1),

當x>2時,y隨x的增大而增大,7>6,

y1>y2

錯誤;

綜上所述,正確的結論是①③④

故選C.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】一個多邊形的內角和比其外角和的2倍多180°,則該多邊形的對角線的條數(shù)是__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】徐老師給愛好學習的小敏和小捷提出這樣一個問題:如圖1,ABC中,∠B=2C,AD是∠BAC的平分線.求證:AB+BD=AC

小敏的證明思路是:在AC上截取AE=AB,連接DE.(如圖2)

小捷的證明思路是:延長CB至點E,使BE=AB,連接AE.可以證得:AE=DE(如圖3)請你任意選擇一種思路繼續(xù)完成下一步的證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】骰子是一種特別的數(shù)字立方體(見右圖),它符合規(guī)則:相對兩面的點數(shù)之和總是7,下面四幅圖中可以折成符合規(guī)則的骰子的是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)如圖,在ABC中,∠A=42°,ABC和∠ACB的平分線相交于點D,求∠BDC的度數(shù).

(2)在(1)中去掉∠A=42°這個條件,請?zhí)骄俊?/span>BDC和∠A之間的數(shù)量關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若關于x的一元二次方程x22x+m0有一個解為x=﹣1,則m的值為( 。

A. 1B. 3C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等腰Rt△ABC中,BA=BC,∠ABC=90°,點D在AC上,將△ABD繞點B沿順時針方向旋轉90°后,得到△CBE.

(1)求∠DCE的度數(shù);

(2)若AB=4,CD=3AD,求DE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,AB=8cm,BC=16cm,點P從點A開始沿邊AB向點B以2cm/s的速度移動,點Q從點B開始沿邊BC向點C以4cm/s的速度移動,如果點P、Q分別從點A、B同時出發(fā),經(jīng)幾秒鐘PBQ與ABC相似?試說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,在以O為原點的直角坐標系中,拋物線的頂點為A (﹣1,﹣4),且經(jīng)過點B(﹣2,﹣3),與x軸分別交于C、D兩點.

(1)求直線OB以及該拋物線相應的函數(shù)表達式;

(2)如圖1,點M是拋物線上的一個動點,且在直線OB的下方,過點M作x軸的平行線與直線OB交于點N,求MN的最大值;

(3)如圖2,過點A的直線交x軸于點E,且AEy軸,點P是拋物線上A、D之間的一個動點,直線PC、PD與AE分別交于F、G兩點.當點P運動時,EF+EG是否為定值?若是,試求出該定值;若不是,請說明理由.

查看答案和解析>>

同步練習冊答案