【題目】我市某中學(xué)藝術(shù)節(jié)期間,向?qū)W校學(xué)生征集書畫作品.九年級美術(shù)李老師從全年級14個(gè)班中隨機(jī)抽取了A、B、C、D四個(gè)班,對征集到的作品的數(shù)量進(jìn)行了分析統(tǒng)計(jì),制作了如下兩幅不完整的統(tǒng)計(jì)圖.
(1)李老師采取的調(diào)查方式是______________(填“普查”或“抽樣調(diào)查”),李老師所調(diào)查的4個(gè)班征集到作品共_________件,其中B班征集到作品_______________件.
(2)如果全年級參展作品中有4件獲得一等獎(jiǎng),其中有2名作者是男生,2名作者是女生.現(xiàn)在要抽取兩人去參加學(xué)?偨Y(jié)表彰座談會,求恰好抽中一男一女的概率.(要求用樹狀圖或列表法寫出分析過程).
【答案】(1)抽樣調(diào)查;12 ;3;(2)
【解析】
(1)由題意可求出4個(gè)班級征集的作品總數(shù)5÷=12(件),B班征集的作品數(shù)12-2-5-2=3(件),即可得出答案.
(2)根據(jù)題意畫出樹狀圖,再根據(jù)等可能事件的概率公式即可求得答案.
(1)由題意可得,李老師所調(diào)查的4個(gè)班級征集的作品總數(shù)5÷=12(件),
∴B班征集的作品數(shù)12-2-5-2=3(件),
∴李老師采取的調(diào)查方式是抽樣調(diào)查,李老師所調(diào)查的4個(gè)班征集到作品共12件,其中B班征集到作品3件.
(2)畫樹狀圖如下:
所有等可能的情況有12種,其中一男一女有8種,則P==.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線的對稱軸為直線,該拋物線與軸的兩個(gè)交點(diǎn)分別為和,與軸的交點(diǎn)為,其中.
(1)寫出點(diǎn)的坐標(biāo)________;
(2)若拋物線上存在一點(diǎn),使得的面積是的面積的倍,求點(diǎn)的坐標(biāo);
(3)點(diǎn)是線段上一點(diǎn),過點(diǎn)作軸的垂線交拋物線于點(diǎn),求線段長度的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在每個(gè)小正方形的邊長為的網(wǎng)格中,點(diǎn)均在格點(diǎn)上,為小正方形邊中點(diǎn).
(1)的長等于 ______;
(2)請?jiān)谌鐖D所示的網(wǎng)格中,用無刻度的直尺,畫出一個(gè)點(diǎn),使其滿足說明點(diǎn)的位置是如何找到的(不要求證明)______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的曲邊三角形可按下述方法作出:作等邊三角形;分別以點(diǎn),,為圓心,以的長為半徑作,,.三段弧所圍成的圖形就是一個(gè)曲邊三角形,如果一個(gè)曲邊三角形的周長為,那么這個(gè)曲邊三角形的面積是___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知AB是⊙O的直徑,AC是⊙O的弦,過O點(diǎn)作OF⊥AB交⊙O于點(diǎn)D,交AC于點(diǎn)E,交BC的延長線于點(diǎn)F,點(diǎn)G是EF的中點(diǎn),連接CG
(1)判斷CG與⊙O的位置關(guān)系,并說明理由;
(2)求證:2OB2=BCBF;
(3)如圖2,當(dāng)∠DCE=2∠F,CE=3,DG=2.5時(shí),求DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線與x軸交于A(﹣1,0)、E(3,0)兩點(diǎn),與y軸交于點(diǎn)B(0,3).
(1)求拋物線的解析式;
(2)設(shè)拋物線頂點(diǎn)為D,求四邊形AEDB的面積;
(3)△AOB與△DBE是否相似?如果相似,請給以證明;如果不相似,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,拋物線yx2bxc與直線yx3分別交于x軸,y軸上的B,C兩點(diǎn),設(shè)該拋物線與x軸的另一個(gè)交點(diǎn)為A,頂點(diǎn)為D,連接CD交x軸于點(diǎn)E.
(1)求該拋物線的函數(shù)表達(dá)式;
(2)求該拋物線的對稱軸和D點(diǎn)坐標(biāo);
(3)點(diǎn)F,G是對稱軸上兩個(gè)動(dòng)點(diǎn),且FG=2,點(diǎn)F在點(diǎn)G的上方,請直接寫出四邊形ACFG的周長的最小值;
(4)連接BD,若P在y軸上,且∠PBC=∠DBA+∠DCB,請直接寫出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD邊長為4,∠A=60°,M是AD邊的中點(diǎn),N是AB邊上一動(dòng)點(diǎn),將△AMN沿MN所在的直線翻折得到△A′MN,連接A′C,則A′C的最小值是( )
A.2B.+1C.2﹣2D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=x2+bx+c過點(diǎn)A(3, 0)、點(diǎn)B(0, 3).點(diǎn)M(m, 0)在線段OA上(與點(diǎn)A、O不重合),過點(diǎn)M作x軸的垂線與線段AB交于點(diǎn)P,與拋物線交于點(diǎn)Q,聯(lián)結(jié)BQ.
(1)求拋物線表達(dá)式;
(2)聯(lián)結(jié)OP,當(dāng)∠BOP=∠PBQ時(shí),求PQ的長度;
(3)當(dāng)△PBQ為等腰三角形時(shí),求m的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com