【題目】先化簡,再求值:(1)(2x2+x﹣1)﹣[4x2+(5﹣x2+x)],其中x=﹣3.

(2)已知A=5x2﹣2xy﹣2y2,B=x2﹣2xy﹣y2,其中x=,y=﹣,求A﹣B的值.

【答案】(1)﹣x2﹣6,﹣15;(2)x2+xy,0.

【解析】

(1)先去括號,再合并同類項(xiàng)化簡原式,再將x的值代入計(jì)算可得;

(2)將A、B所代表的多項(xiàng)式代入A-B列出算式,再去括號、合并同類項(xiàng)化簡原式,最后將x、y的值代入計(jì)算可得.

1)原式=2x2+x-1-4x2-5-x2+x

=2x2+x-1-4x2-5+x2-x

=-x2-6,

當(dāng)x=-3時(shí),

原式=--32-6

=-9-6

=-15;

2A-B

=5x2-2xy-2y2-x2-2xy-y2

=x2-xy-y2-x2+2xy+y2

=x2+xy,

當(dāng)x=、y=-時(shí),

原式=×-=-=0

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在ABCD中,延長DA到點(diǎn)E,延長BC到點(diǎn)F,使得AE=CF,連接EF,分別交AB,CD于點(diǎn)H,G,連接DH,BG.

(1)求證:△AEH≌△CFG;

(2)連接BE,若BE=DE,則四邊形BGDH是什么特殊四邊形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,P是等邊△ABC內(nèi)的一點(diǎn),且PA=5,PB=4,PC=3,將△APB繞點(diǎn)B逆時(shí)針旋轉(zhuǎn),得到△CQB.求:

(1)點(diǎn)P與點(diǎn)Q之間的距離;
(2)求∠BPC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)在下列橫線上用含有a,b的代數(shù)式表示相應(yīng)圖形的面積.

①a2;②____________. b2 ; _________________.

(2)請?jiān)趫D④畫出拼圖并通過拼圖,你發(fā)現(xiàn)前三個(gè)圖形的面積與第四個(gè)圖形面積之間有什么關(guān)系?請用數(shù)學(xué)式子表達(dá):       

(3)利用(2)的結(jié)論計(jì)算10.232+20.46×9.77+9.772的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義一種對正整數(shù)n“F”運(yùn)算:①當(dāng)n為奇數(shù)時(shí),F(n)=3n+1;②當(dāng)n為偶數(shù)時(shí),F(n)=(其中k是使F(n)為奇數(shù)的正整數(shù))……,兩種運(yùn)算交替重復(fù)進(jìn)行,例如,取n=24,則:

n=13,則第2018“F”運(yùn)算的結(jié)果是( 。

A. 1 B. 4 C. 2018 D. 42018

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】結(jié)合數(shù)軸與絕對值的知識回答下列問題:

(1)數(shù)軸上表示41的兩點(diǎn)之間的距離為|4﹣1|=   ;表示5和﹣2兩點(diǎn)之間的距離為|5﹣(﹣2)|=|5+2|=   ;一般地,數(shù)軸上表示數(shù)m和數(shù)n的兩點(diǎn)之間的距離等于|m﹣n|,如果表示數(shù)a和﹣2的兩點(diǎn)之間的距離是3,那么a=   

(2)若數(shù)軸上表示數(shù)a的點(diǎn)位于﹣42之間,求|a+4|+|a﹣2|的值;

(3)當(dāng)a=   時(shí),|a+5|+|a﹣1|+|a﹣4|的值最小,最小值為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知A=3a2b2ab2+abc,小明同學(xué)錯(cuò)將“2A﹣B“看成”2A+B“,算得結(jié)果為4a2b3ab2+4abc

(1)計(jì)算B的表達(dá)式;

(2)求出2AB的結(jié)果;

(3)小強(qiáng)同學(xué)說(2)中的結(jié)果的大小與c的取值無關(guān),對嗎?若a=,b=,

(2)中式子的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,⊙O的半徑是5cm,PA、PB切⊙O于點(diǎn)A、B兩點(diǎn),∠PAB=60°.求AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線ABCD相交于點(diǎn)O,OFOD分別是AOE,BOE的平分線.

(1)寫出DOE的補(bǔ)角;

(2)BOE62°,求AODEOF的度數(shù);

(3)試問射線ODOF之間有什么特殊的位置關(guān)系?為什么?

查看答案和解析>>

同步練習(xí)冊答案