【題目】解決下列兩個(gè)問題:

1)如圖(1),在中,,垂直平分,點(diǎn)在直線上,直接寫出的最小值,并在圖中標(biāo)出當(dāng)取最小值時(shí)點(diǎn)的位置;

2)如圖(2),點(diǎn),的內(nèi)部,請(qǐng)?jiān)?/span>的內(nèi)部求作一點(diǎn),使得點(diǎn)兩邊的距離相等,且使.(尺規(guī)作圖,保留作圖痕跡,無需證明).

【答案】14,圖見解析;(2)作圖見解析

【解析】

1)根據(jù)題意知點(diǎn)B關(guān)于直線EF的對(duì)稱點(diǎn)為點(diǎn)C,故當(dāng)點(diǎn)P與點(diǎn)D重合時(shí),AP+BP的最小值,求出AC長(zhǎng)度即可得到結(jié)論.

2)作∠AOB的平分線OE,作線段MN的垂直平分線GHGHOE于點(diǎn)P,點(diǎn)P即為所求.

解:(1)點(diǎn)P的位置如圖所示:

EF垂直平分BC,

BC關(guān)于EF對(duì)稱,

設(shè)ACEFD

∴當(dāng)PD重合時(shí),AP+BP的值最小,最小值等于AC的長(zhǎng),即最小值為4

故答案為:4

2)如圖,①作∠AOB的平分線OE,②作線段MN的垂直平分線GH,GHOE于點(diǎn)P,則點(diǎn)P即為所求.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四邊形ABCD是矩形,延長(zhǎng)AB至點(diǎn)F,連結(jié)CF,使得CF=AF,過點(diǎn)AAEFC于點(diǎn)E.

1)求證:AD=AE.

2)連結(jié)CA,若∠DCA=70°,求∠CAE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某大學(xué)生創(chuàng)業(yè)團(tuán)隊(duì)抓住商機(jī),購(gòu)進(jìn)一批干果分裝成營(yíng)養(yǎng)搭配合理的小包裝后出售,每袋成本3元.試銷期間發(fā)現(xiàn)每天的銷售量y(袋)與銷售單價(jià)x(元)之間滿足一次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如表所示,其中3.5≤x≤5.5,另外每天還需支付其他費(fèi)用80元.

(1)請(qǐng)直接寫出yx之間的函數(shù)關(guān)系式;

(2)如果每天獲得160元的利潤(rùn),銷售單價(jià)為多少元?

(3)設(shè)每天的利潤(rùn)為w元,當(dāng)銷售單價(jià)定為多少元時(shí),每天的利潤(rùn)最大?最大利潤(rùn)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,延長(zhǎng)線上一點(diǎn),連接,,于點(diǎn).添加以下條件,不能判定四邊形為平行四邊形的是( )

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知,BD為△ABC的角平分線,且BD=BC,E為BD延長(zhǎng)線上的一點(diǎn),BE=BA.下列結(jié)論:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=AE=EC;④AC=2CD.其中正確的有( ) 個(gè)

A. 1 B. 2 C. 3 D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的面積是,上的一點(diǎn),且,,延長(zhǎng),使,則的面積是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩位同學(xué)5次數(shù)學(xué)成績(jī)統(tǒng)計(jì)如表,他們的5次總成績(jī)相同,小明根據(jù)他們的成績(jī)繪制了尚不完整的統(tǒng)計(jì)圖表,請(qǐng)同學(xué)們完成下列問題.

其中,甲的折線圖為虛線、乙的折線圖為實(shí)線.

甲、乙兩人的數(shù)學(xué)成績(jī)統(tǒng)計(jì)表

1

2

3

4

5

甲成績(jī)

90

40

70

40

60

乙成績(jī)

70

50

70

a

70

1a   ,   ;

2)請(qǐng)完成圖中表示乙成績(jī)變化情況的折線;

3S2260,乙成績(jī)的方差是   ,可看出   的成績(jī)比較穩(wěn)定(填).從平均數(shù)和方差的角度分析,   將被選中.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ABC=90°D是邊AC上的一點(diǎn),連接BD,使∠A=2∠1,EBC上的一點(diǎn),以BE為直徑的⊙O經(jīng)過點(diǎn)D

1)求證:AC⊙O的切線;

2)若∠A=60°⊙O的半徑為2,求陰影部分的面積.(結(jié)果保留根號(hào)和π

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)用4個(gè)全等的直角三角形拼成如圖所示弦圖”.Rt△ABC中,∠ACB=90°,若AC=b,BC=a,請(qǐng)你利用這個(gè)圖形解決下列問題:

(1)試說明a2+b2=c2;

(2)如果大正方形的面積是6,小正方形的面積是2,求(a+b)2的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案