【題目】有這樣一個問題:探究函數(shù)的圖象與性質.小東根據(jù)學習函數(shù)的經(jīng)驗,對函數(shù)的圖象與性質進行了探究.下面是小東的探究過程,請補充完整:
(1)函數(shù)的自變量x的取值范圍是 ;
(2)下表是x與y的幾組對應值.
... | 1 | 2 | 3 | ... | ||||||||
... | m | ... |
求m的值;
(3)如圖,在平面直角坐標系中,已描出了以上表中各對對應值為坐標的點.根據(jù)描出的點,畫出該函數(shù)的圖象;
(4)進一步探究發(fā)現(xiàn),該函數(shù)圖象在第一象限內(nèi)的最低點的坐標是(1,).結合函數(shù)的圖象,寫出該函數(shù)的其它性質(寫兩條即可).
科目:初中數(shù)學 來源: 題型:
【題目】計算:
(1)2a(b2c3)2·(-2a2b)3;
(2)(2x-1)2-x(4x-1);
(3)632+2×63×37+372.(用簡便方法)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有160個零件,平均分配給甲、乙兩個車間加工,乙車間因另有緊急任務,所以在甲車間加工3小時后才開始加工,因此比甲車間遲20分鐘完成。
(1)已知甲、乙兩車間的生產(chǎn)效率的比是1:3,則甲、乙兩車間每小時各能加工多少零件?
(2)如果零件總數(shù)為a個,(1)中其它條件不變,則甲、乙兩車間每小時各加工多少個零件(用含a的式子表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小紅在數(shù)學課上學習了角的相關知識后,立即對角產(chǎn)生了濃厚的興趣.她查閱書籍發(fā)現(xiàn)兩個有趣的概念,三角形中相鄰兩條邊的夾角叫做三角形的內(nèi)角;三角形一條邊的延長線與其鄰邊的夾角,叫做三角形的外角.小紅還了解到三角形的內(nèi)角和是180°,同時她很容易地證明了三角形外角的性質,即三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和.于是,愛思考的小紅在想,三角形的內(nèi)角是否也具有類似的性質呢?三角形的一個內(nèi)角與它不相鄰的兩個外角的和之間存在怎樣的數(shù)量關系呢?
①嘗試探究:
(1)如圖1,∠1與∠2分別為△ABC的兩個外角,試探究∠A與∠1+∠2之間存在怎樣的數(shù)量關系?為什么?
解:數(shù)量關系:∠l+∠2=180°+∠A
理由:∵∠1與∠2分別為△ABC的兩個外角
∴∠1=180°-∠3,∠2=180°-∠4
∴∠1+∠2=360°-(∠3+∠4)
∵三角形的內(nèi)角和為180°
∴∠3+∠4=180°-∠A
∴∠l+∠2=360°-(180°-∠A)=180°+∠A
小紅順利地完成了探究過程,并想考一考同學們,請同學們利用上述結論完成下面的問題.
②初步應用:
(2)如圖2,在△ABC紙片中剪去△CED,得到四邊形ABDE,∠1=130°,則∠2-∠C=________;
(3)如圖3,在△ABC中,BP、CP分別平分外角∠DBC、∠ECB,則∠P與∠A有何數(shù)量關系?________________.(直接填答案)
③拓展提升:
(4)如圖4,在四邊形ABCD中,BP、CP分別平分外角∠EBC、∠FCB,則∠P與∠1、∠2有何數(shù)量關系?為什么?(若需要利用上面的結論說明,可直接使用,不需說明理由.)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,若直線y=kx+b經(jīng)過第一、三、四象限,則直線y=bx+k不經(jīng)過的象限是( 。
A.第一象限
B.第二象限
C.第三象限
D.第四象限
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】求若干個相同的不為零的有理數(shù)的除法運算叫做除方.
如:2÷2÷2,(-3)÷(-3)÷(-3 )÷( -3)等. 類比有理數(shù)的乘方,我們把 2÷2÷2 記作 2③,讀作“2 的圈 3 次方”. (-3)÷(-3)÷(-3 )÷( -3)記作(-3)④,讀作“-3 的圈 4 次方”.
一般地,把(a≠0)記作,讀作“a的圈n次方”.
(1)直接寫出計算結果: _____, _________, ___________,
(2)我們知道,有理數(shù)的減法運算可以轉化為加法運算,除法運算可以轉化為乘法運算,
請嘗試將有理數(shù)的除方運算轉化為乘方運算,歸納如下:一個非零有理數(shù)的圈 n 次方等于_____.
(3)計算 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com