如圖,在平面直角坐標(biāo)系中,已知Rt△AOB的兩條直角邊0A、08分別在y軸和x軸上,并且OA、OB的長分別是方程x2—7x+12=0的兩根(OA<0B),動(dòng)點(diǎn)P從點(diǎn)A開始在線段AO上以每秒l個(gè)單位長度的速度向點(diǎn)O運(yùn)動(dòng);同時(shí),動(dòng)點(diǎn)Q從點(diǎn)B開始在線段BA上以每秒2個(gè)單位長度的速度向點(diǎn)A運(yùn)動(dòng),設(shè)點(diǎn)P、Q運(yùn)動(dòng)的時(shí)間為t秒.
(1)求A、B兩點(diǎn)的坐標(biāo)。
(2)求當(dāng)t為何值時(shí),△APQ與△AOB相似,并直接寫出此時(shí)點(diǎn)Q的坐標(biāo).
(3)當(dāng)t=2時(shí),在坐標(biāo)平面內(nèi),是否存在點(diǎn)M,使以A、P、Q、M為頂點(diǎn)的四邊形是平行四邊形?若存在,請直接寫出M點(diǎn)的坐標(biāo);若不存在,請說明理由.
(1)A(0,3), B(4,0)(2)t= ,Q();t= ,Q()(3)存在。M1(), M2(),M3()
【解析】解:(1)由x2-7 x +12=0解得x1=3,x2=4。
∵OA<OB ,∴OA=3 , OB=4。∴A(0,3), B(4,0)。
(2)由OA=3 , OB=4,根據(jù)勾股定理,得AB=5。
由題意得,AP=t, AQ=5-2t 。分兩種情況討論:
①當(dāng)∠APQ=∠AOB時(shí),如圖1,
△APQ∽△AOB。∴,即 解得 t= !郠()。
②當(dāng)∠AQP=∠AOB時(shí),如圖2,
△APQ∽△ABO!,即 解得 t= !郠()。
(3)存在。M1(), M2(),M3()。
(1)解出一元二次方程,結(jié)合OA<OB即可求出A、B兩點(diǎn)的坐標(biāo)。
(2)分∠APQ=∠AOB和∠AQP=∠AOB兩種情況討論即可。
(3)當(dāng)t=2時(shí),如圖,
OP=2,BQ=4,∴P(0,1),Q()。
若以A、P、Q、M為頂點(diǎn)的四邊形是平行四邊形,則
①當(dāng)AQ為對(duì)角線時(shí),點(diǎn)M1的橫坐標(biāo)與點(diǎn)Q的橫坐標(biāo)相同,縱坐標(biāo)為!郙1()。
②當(dāng)PQ為對(duì)角線時(shí),點(diǎn)M2的橫坐標(biāo)與點(diǎn)Q的橫坐標(biāo)相同,縱坐標(biāo)為。∴M2()。
③當(dāng)AP為對(duì)角線時(shí),點(diǎn)Q、M3關(guān)于AP的中點(diǎn)對(duì)稱。
由A(0,3),P(0,1)得AP的中點(diǎn)坐標(biāo)為(0,2)。
由Q()得M3的橫坐標(biāo)為,縱坐標(biāo)為。∴M3()。
綜上所述,若以A、P、Q、M為頂點(diǎn)的四邊形是平行四邊形,則M點(diǎn)的坐標(biāo)為
()或()或()。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
BD |
AB |
5 |
8 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
5 |
29 |
5 |
29 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
k |
x |
k |
x |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com